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Abstract
Many features of the development of reptiles are affected by temperature, but very little is known

about how incubation temperature affects gene expression. Here, we provide a detailed case

study of gene expression profiles in common wall lizard (Podarcis muralis) embryos developing at

stressfully low (15◦C) versus benign (24◦C) temperature. For maximum comparability between

the two temperature regimes, we selected a precise developmental stage early in embryogene-

sis defined by the number of somites. We used a split-clutch design and lizards from four differ-

ent populations to evaluate the robustness of temperature-responsive gene expression profiles.

Embryos incubated at stressfully low incubation temperature expressed on average 20% less total

RNA than those incubated at benign temperatures, presumably reflecting lower rates of transcrip-

tion at cool temperature. After normalizing for differences in total amounts of input RNA, we find

that approximately 50%of all transcripts showsignificant expressiondifferences between the two

incubation temperatures. Transcripts with the most extreme changes in expression profiles are

associated with transcriptional and translational regulation and chromatin remodeling, suggest-

ing possible epigenetic mechanisms underlying acclimation of early embryos to cool temperature.

We discuss our findings in light of current advances in the use of transcriptomic data to study how

individuals acclimatize and populations adapt to thermal stress.
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1 INTRODUCTION

Temperature profoundly influences nearly all developmental pro-

cesses and biological functions. While the embryos of live-bearing

endotherms experience a constant temperature throughout their

developmental period, ectothermic embryos often have to cope with

a wide range of temperatures (Birchard, 2004). For example, embryos

of egg-laying reptiles are likely to be exposed to thermal stress in the

nest. This includes daily fluctuations and prolonged exposure to very

high or low temperatures, the latter sometimes for weeks in a row as a

result of low ambient temperature or limited solar irradiation in tem-

perate regions (Berglind, 2000; Löwenborg, Shine, Kärvemo, & Hag-

man, 2010; While et al., 2015). This is important, because low tem-

perature reduces the speed of biochemical reactions, and thus slows

down growth and differentiation (Angilletta, 2009; Gillooly, Charnov,

West, Savage, & Brown, 2002). Consequently, cool-incubated eggs

hatch later than warm-incubated eggs and will therefore experience

a shorter first growing season (Le Henanff, Meylan, & Lourdais, 2013;

Löwenborg, Gotthard, &Hagman, 2012;While et al., 2015). Incubation

at low temperatures can also lead to the disruption of biological pro-

cesses or, in extreme cases, embryonic mortality (e.g., Shine, Madsen,

Elphick, & Harlow, 1997).

While there is evidence that temperature stress impairs ectotherm

development, we still know very little about the underlying mech-

anisms and the extent to which physiological changes may buffer

such damage. Studies of short-term thermal stress indicate that gene

expression can bemodulated tominimize damaging effects of extreme

temperatures. For example, zebrafish larvae exposed to both critically

cool or hot temperatures upregulate a number of heat shock protein

(hsp) genes, including hsp90 and hsp70 (Long, Li, Li, He, & Cui, 2012),

which assist the folding of proteins that would otherwise be dena-

tured. In addition to this general stress response, critically cool temper-

atures also cause expression of specific pro-inflammatory cytokines in

zebrafish and common carp, such as cirbp (cold inducible RNA bind-

ing protein) and hmgb1 (high-mobility group box 1; Chou et al., 2008;

Gracey et al., 2004; Long et al., 2012). Studies on the impact of more

prolonged exposure to sub-critical temperatures are currently lacking,

but it is reasonable to assume that such temperatures also have the

potential to trigger adaptively plastic responses that ensure that devel-

opment can be sustained.
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Despite the fact that developmental plasticity has been reported

for a diverse range of functional traits across a wide range of reptile

taxa (reviewed in Noble, Stenhouse, & Schwanz, 2018; Warner, 2014),

surprisingly little is knownabout howgeneexpression varieswith incu-

bation temperature in reptilian embryos. The one exception to this is

sexdetermination,whereexisting transcriptomicdata come fromstud-

ies aiming to reveal the genetic basis of temperature-dependent sex

determination in turtles, crocodiles, and lizards (Czerwinski,Natarajan,

Barske, Looger, & Capel, 2016; Deveson et al., 2017; Radhakrishnan

et al. 2017; Yatsu et al., 2016). However, since these studies targeted

exclusively gonadal tissue, their findings do not allow conclusions to

be drawn about systemic responses to incubation temperature.

To address this, we usedRNAsequencing (RNA-seq) to characterize

the transcriptomic responses of common wall lizard (Podarcis muralis)

embryos exposed to sustained cool temperature. Wall lizards have

a long history in studies of responses to thermal extremes. Indeed,

adult wall lizards were among the first vertebrates demonstrated

to be capable of freeze-tolerance (Claussen, Townsley, & Bausch,

1990; Weigmann, 1929). While this suggests substantial cold tol-

erance in the adult life stage, embryos are strongly affected by low

temperature (Cooper, 1958, 1965; While et al., 2015). As in many

other lizards, wall lizard embryos begin their development before

the eggs are laid, which means that early thermal conditions reflect

maternal thermoregulation. However, following oviposition in spring,

soil temperatures can be substantially lower and embryosmay need to

maintain biological function and develop at temperatures well below

20◦C. For example, thermal profiles of nests in non-native populations

in England frequently average below 20◦C, with only brief periods

of time at the higher temperatures typically used to incubate eggs in

captivity (While et al., 2015). Similar climatic conditions occur at high

altitude or latitude in their native range and, even within the warmer

parts of the species’ distribution, soil temperatures could stay well

below 20◦C for days on end.

Here, we used animals from four native populations of wall lizards,

two from France and two from central Italy, to assess the effects of

low incubation temperature on gene expression in early embryos, and

to test how conserved temperature-specific gene expression is across

populations. We found that a large proportion of the transcriptome is

differentially expressed at 15◦C versus 24◦C, and that this response is

highly conserved across the geographic scale of our study.We identify

fourmain types of responses: gene expression regulation, protein fold-

ing, epigenetic modification, and cell-cycle regulation. Thus, our tran-

scriptomic study allows the formulation of more precise hypotheses

for further studies on the molecular mechanisms underlying thermal

acclimation and adaptation.

2 MATERIALS AND METHODS

2.1 Experimental design and egg incubation

The common wall lizard (Podarcis muralis) is widely distributed in

central Europe. Oviposition occurs from spring to early summer and

females typically bury their eggs into soil between 5 and 10 cm deep

(Gruschwitz & Böhme, 1986). We selected four populations from the

species’ native distribution, two from France and two from central

Italy. These two regions are inhabited by lizards belonging to twoof the

main genetic lineages of this species, which diverged about 2.5 million

years ago (Gassert et al., 2013; Michaelides, While, Zajac, & Uller,

2015). In April 2015, we collected 13 gravid females from Western

France (around Pouzagues [46.788 N, –0.837 E] altitude: 258 m; will

be referred to as Fr1), 15 from the French Pyrenees ([42.860 N, 1.105

E]; altitude: 1396 m; Fr2), 18 from lowland Tuscany (Greve in Chianti

[43.588N, 11.318 E], Colle di Val d'Elsa [43.428N, 11.118 E], Certaldo

[43.548 N, 11.042 E]; altitude: 83–245m; It1), and 15 from the Tuscan

Apennines (around Saltino [43.727 N, 11.538 E]; altitude: 966 m; It2).

Although these populations experience different climatic conditions,

partly as a result of differences in latitude and altitude, we did not

necessarily expect any of them to be adapted to very low temperature,

in contrast to the previously studied non-native populations in England

(Feiner, Rago,While, & Uller, 2018;While et al., 2015).

Gravid females were transported to the animal facility at the

Oxford University, UK, and all procedures were conducted according

to the University of Oxford's Local Ethical Review Process and the UK

Home Office (PPL: 30/2560). Females were kept individually in cages

under standard conditions (cage size: 590 × 390 × 415 mm; sand as

substrate; 12L:12D light cycle; access to basking light [60 W] for 8

hr per day and UV light [EXO-TERRA 10.0 UVB fluorescent tube] for

4 hr per day; access to mealworms, crickets, and water ad libitum). We

inspected cages twice a day for laid clutches to retrieve eggs within

12 hr after oviposition. Since variation of developmental stages within

a clutch is negligible (T.U., pers. obs.), we immediately dissected one

egg per clutch to determine the developmental stage of its siblings at

laying. Remaining eggs were divided into two groups and incubated

in small plastic containers filled two-thirds with moist vermiculite

(volume ratio 5:1 vermiculite:water) sealed with clingfilm. One half of

the eggs were incubated at 15◦C (cool) and the other half was incu-

bated at 24◦C (warm). The cool temperature is likely to be commonly

experienced for sustained periods in parts of the species’ distribution

and is above the critical minimum temperature for development. This

exact temperature has not been systematically addressed in P. muralis

embryos, but it is likely to be below 12◦C (Cooper, 1965). However,

if embryos are incubated constantly at 15◦C, they are not able to

hatch, even if they develop full-term (Cooper, 1958, 1965; While

et al., 2015). The warm treatment is within the optimal incubation

temperature judged from high hatching success, low variance in

incubation duration, and low incidence of scale abnormalities (Braña &

Ji, 2000; Van Damme, Bauwens, Braña, & Verheyen, 1992;While et al.,

2015).

2.2 Embryo collection

To compare gene expression profiles across temperatures and popula-

tions, it is necessary to keep ontogenetic variation in gene expression

to a minimum. We therefore applied somite counts to determine

developmental age instead of the more coarse-grained conventional

classification of developmental stages (e.g., Dufaure & Hubert, 1961).

Since somites are added at a constant rate at a given temperature

(Pourquie, 2003), the count of somites at oviposition can be used
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F IGURE 1 Targeted embryonic stage and broad patterns of variation in the dataset. (A) A common wall lizard embryo with 32 somites, corre-
sponding to the pharyngula stage. (B) Plot representing the first and second principal components of expression levels. Major differences are seen
between incubation temperatures (cool in blue, and warm in orange color), and between the four populations (highlighted by different shape out-
lines). The first principal component captures geographical differentiation and represents 28% of the total variance, and the second principal com-
ponent marks differences due to incubation temperature explaining 19% of the total variance. (C and D) Sample distances reduced to a simplified
2D (C) and 3D (D) transcriptome space using tSNE. Populations group together and separate clearly between cool and warm incubation temper-
atures in each. French populations 1 and 2 form distinct clusters, whereas both Italian populations show similar expression patterns in panels (B)
and (C). bv, brain vesicle; ey, eye; ov, otic vesicle [Color figure can be viewed at wileyonlinelibrary.com]

to predict the time required to reach the desired somite count. The

somite ‘clock’ rate for our study species was experimentally deter-

mined to be four somites per day at 24˚Cand four somites per 7 days at

15˚C.We deemed a somite count of 32± 1 (corresponding to stage 27

according to Dufaure & Hubert, 1961; Figure 1a) appropriate for our

purposes since this allowed the warm incubated embryos to develop

for at least 12 hr (average 43.7 ± 3.1 hr SE), while requiring the cool

incubated embryos to develop for an average of about 2 weeks (16.8

± 1.1 days). We reasoned that 12 hr is a sufficient amount of time to

acclimatize gene expression patterns because (i) the magnitude of

temperature change that eggs experience from the warm nesting site

to the 24◦C incubation treatment is very small (average temperature

of nest sites in laboratory conditions, 25◦C,While et al., 2015), and (ii)

gene expression has been shown to adjust rather quickly, in the order

of 3–4 hr (Jovic et al., 2017). Based on our predictions, we selected

eggs for dissection at regular intervals to ensure that a sufficient

number of embryos of the targeted developmental age would be

available for sequencing.

We further decreased the confounding variation among our sam-

ples by following a strict protocol. First, we performed dissections

between paired embryos of a clutch at the same time of day (within

a 1-hr interval) to minimize variation caused by diurnal patterns of

embryonic gene expression (Seron-Ferre, Valenzuela, & Torres-Farfan,

2007). Second, all eggs were processed within 5 min of removal

from the incubator to avoid changes in gene expression patterns.

We dissected embryos from yolk and extraembryonic membranes in

nuclease-free phosphate-buffered saline using sterile forceps under

a dissecting microscope, counted their somites, and submerged them

in RNAlater (Qiagen) to stabilize RNA for storage. Total RNA from a

total of 80 individual embryos at the targeted developmental age was

extracted by using the RNeasy Micro Kit (Qiagen). The quantity of

harvested total RNAwas measured with the Qubit R© 2.0 Fluorometer

system and the ‘RNA BR Assay Kit’ (Thermo Fisher Scientific), and

RNA integritywas determined to score above anRNAquality indicator

value of 9 with the Experion system using the ‘Eukaryote Total RNA

StdSens Analysis kit’ (Bio-Rad).
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2.3 Transcriptome sequencing, assembly, and

quantification of expression levels

For each of the eight groups (four populations, two incubation tem-

peratures), we sequenced five samples consisting of a single embryo

each (‘single embryo’), and in addition one sample consisting of a pool

of equimolar amounts of total RNA from five non-sibling embryos

(‘pooled embryos’), resulting in 48 samples. Including a pooled sample

is useful for the de novo assembly of transcriptomes since they con-

tain more sequence variation than samples from individual embryos

(which in turn provide more sequencing depth). Two microgram high-

quality total RNAper samplewas submitted toRNA sequencing, which

was performed by theWelcome Trust Centre, Oxford, UK, whose ser-

vice included library preparation with the ‘TruSeq Stranded mRNA

Library Prep’ kit (Illumina). Size selected andmultiplexed librarieswere

paired-end sequenced (100bp) over a total of 16 lanes on aHiSeq2000

Sequencing System (Illumina) by applying a balanced block design

(Auer & Doerge, 2010). This produced on average 39.3 million raw

reads per sample, and visualization of the quality of sequencing data

using FastQC (Andrews, 2010) indicated high quality throughout the

dataset.

For a detailed description of the bioinformatics pipeline applied,

including lines of code that should facilitate analyzing RNA-seq data

for inexperienced users, please refer to Supporting Information File

1. In brief, we removed low quality reads and low quality bases at the

ends of reads using Trimmomatic version 0.32 (Bolger, Lohse, &Usadel,

2014). Since the French and Italian lineages have diverged over 2 mil-

lion years ago (Gassert et al., 2013), we assembled two separate ref-

erence transcriptomes that were merged into one before we quanti-

fied gene expression levels. Each assembly was performed using the

Trinity software version 2.3.2 (Haas et al., 2013). The resulting assem-

blies were de-duplicated using CD-HIT-EST version 4.6.5 (Li & Godzik,

2006). After pseudo-mapping all reads with kallisto (Bray, Pimentel,

Melsted, & Pachter, 2016), lowly expressed transcripts (lower than

one transcript per million reads [tpm]) were removed from the assem-

blies, and only the transcripts with the highest expression levels per

gene were retained. To make expression profiles of French and Ital-

ian lizard embryos comparable, we assigned orthologs using the Pro-

teinortho software version 5.15 (Lechner et al., 2011) and merged

the two de novo assemblies into one shared assembly using a custom

script.

To determine levels of gene expression for all 48 samples, we

applied the pseudo-alignment strategy in kallisto that uses a proba-

bilistic framework (Bray et al., 2016). Prior to analyzing abundances,

we removed genes that had zero variance in gene expression across

samples, and genes with fewer than five tpm in more than four sam-

ples. This resulted in a transcriptome comprising 22,074 transcripts

with aN50value of 2.764bp.We refer to expressed sequences as tran-

scripts in the technical sense but use the term ‘genes’ in more general

discussions of the data and the results. Similarly, we equate quantified

numbers of transcripts with levels of gene expression, although RNA

degradation also shapes the pool of transcripts (implicitly assuming

that the latter process is rather nonspecific with respect to the kind of

transcript).

2.4 Principal component analysis and clustering

based on expression similarity

For visualizing broad pattern of variation in our dataset and con-

firming cohesion among our treatment groups, we applied two differ-

ent approaches: a conventional global principal component analysis

(PCA) and a local machine learning approach using a tree-based algo-

rithm (t-distributed stochastic neighbor embedding, or tSNE). Both

approaches use variance-stabilized expression data as input (Love,

Huber, & Anders, 2014). We plotted the first and second principal

components (Figure 1b) using the ‘plotPCA’ function as implemented

in DESeq2 (Love et al., 2014). The machine learning approach was

implemented using the R package ‘Rtsne’ (van der Maaten, 2014)

which projects samples into 2D and 3D spaces maintaining dis-

tances between them similar to the original high-dimensional space

(Figures 1c and 1d).

2.5 Differential gene expression

To take full advantage of the probabilistic quantifications produced

by the kallisto software, we applied sleuth (Pimentel, Bray, Puente,

Melsted, & Pachter, 2017) for analyzing differential gene expressions.

This software is considered superior to other methods (e.g., DESeq2)

because it decomposes inferential variance (noise stemming from

random sequencing and computational analysis) from biological vari-

ance and thus leads to a higher sensitivity in identifying differentially

expressed genes (Pimentel et al., 2017). In addition to performing dif-

ferential gene expression analysis using sleuth, and for ease of com-

parison to previous studies, we confirmed our results by using the

more conventional software DESeq2. For this, we imported quantifi-

cation data produced by kallisto using the R package tximport (Sone-

son, Love, & Robinson, 2015). Since sleuth and DESeq2 do not allow

mixed effects, we fitted generalized linear models with ‘clutch’ as a

fixed effect in order to take relatedness between siblings into account.

Neither of the statistical frameworks allows nested factors, and we

therefore treated the populations as four levels of the factor ‘popula-

tion’, without specificallymodeling effects of the genetic lineage. For all

likelihood-ratio tests (LRTs) in sleuth, we applied a false discovery rate

(FDR) adjusted q-value of 0.01, and an FDR adjusted P-value of 0.01 in

DESeq2.

2.6 Transcriptional cluster analysis

Compared with single-gene linear models, cluster analyses can help

overcome the intrinsic problems of multiple-hypothesis testing, effec-

tively increasing the power of a study. Clustering analyses also allow

us to detect which expression patterns are prevalent in an experi-

ment, as well as explicitly describe the relationships between genes

in each cluster. Therefore, we applied weighted gene co-expression

network analysis (WGCNA), a widely used tool to cluster genes

based on their expression similarity (Langfelder & Horvath, 2008).

Briefly, WGCNA generates pairwise correlations across transcripts in

a dataset, which are then power-transformed to an exponent suffi-

cient to make pairwise correlations power-distributed (13 in our case,
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retaining sign information for further clustering). This distribution con-

forms to a scale-free network topology, which is generally expected

in natural networks (Barabási & Oltvai, 2004), and effectively penal-

izes weak correlations.WGCNA then hierarchically clusters individual

transcripts according to their topological overlap, which measures the

similarity between their connections.We set the ‘deepSplit’ parameter

(roughly analogous to cut height in tree-based clustering methods) to

0,whichbiases thealgorithmtomerge similar clusters, andwe imposed

a minimal cluster size of 20 transcripts. Transcripts whose expression

patterns are too dissimilar from their nearest cluster were assigned to

the ‘grey’ cluster (the color terminology for module IDs is default in

the WGCNA software). We represent the average expression pattern

of each cluster by extracting its first principal component (or eigen-

gene). We tested each eigengene for significant responses to temper-

ature, population, and their interaction using a linear mixed model,

which allowed us to estimate and control for the variance explained by

between-clutch effects.

2.7 Functional annotation of transcripts

Functional annotation of de novo assembled transcriptomes of non-

model organisms can be achieved by associating transcripts with

annotated homologs of other species. We used the Trinotate pipeline

(https://trinotate.github.io/), which automates homology searches

and summarizes the resulting annotations using a SQLite database.

We performed homology searches both on the level of nucleotides

as well as putative peptide sequences to increase the chances of

finding an annotated homolog. Putative amino acids are predicted by

Transdecoder version 2.0.1 (https://transdecoder.sourceforge.net/;

minimum length set to 50 amino acids). These putative peptides (and

original transcripts) were used as queries in blastp (blastx) searches

against the UniProtKB/Swiss-Prot database (release “November

22, 2017″). Furthermore, putative peptides were used in hmmscan

searches (hmmer version 3.1b2) against PFAM, a database of protein

domains (Finn et al., 2014). Trinotate retrieves Gene Ontology (GO)

annotations (Ashburner et al., 2000) from significant blast hits and

PFAM hits (E-value cutoff 10−5), and summarizes the results in table

format. We obtained significant blast hits for 10,567 (43.42%) and

PFAMhits for 8,630 (35.46%), resulting in GO terms assigned to 9,809

(40.31%) of all transcripts.

2.8 Gene ontology signatures of incubation

temperature

Since a considerable proportion of the transcriptome showed signif-

icant expression changes in response to incubation temperature (see

below), we deemed it inappropriate to apply gene enrichment analysis

probing which GO terms are enriched in differentially expressed

transcripts. We therefore applied the R package ‘GOexpress’ (Rue-

Albrecht et al., 2016) for the identification of GO terms that best

discriminate between the cool and warm incubation treatment using a

random-forest algorithm.

In brief, GOexpress attempts to separate samples incubated in cool

and warm temperatures by picking a single gene and an expression

threshold so that this gene exceeds the threshold in as many warm

samples as possible and in as few cool ones as possible, or vice versa.

This process generates one group of samples on each side of the

expression threshold, which represent the best separation one can

achieve with a single gene. If any of those sample groups contains

a mixture of cool and warm samples, the algorithm selects a new

gene-threshold pair to separate them. This produces a ranked list of

genes whose expression levels can be used to separate incubation

temperatures.

To avoid relying on a few genes that are highly correlated with

temperature, we restrict the search to a random subset of 211 genes

at each split, which corresponds to the default value of twice the

square root of the entire dataset. We repeat the entire algorithm a

total of 5,000 times and average the rank of each gene across the

entire set. We average the score of all genes within each GO term and

compare themwith those produced by 5,000 random permutations of

the dataset to generate empirical P-values. These P-values represent

the odds that the same GO term will be identified as significantly

enriched when using random sample groups. We excluded GO terms

that were assigned to less than 30 transcripts in our dataset from

the final evaluation. To further characterize the nature of GO terms

discriminating between incubation temperatures (P-values < 0.01),

we visualized their semantic similarities using the software REVIGO

(Supek, Bošnjak, Škunca, & Šmuc, 2011) that uses multidimensional

scaling and graph-based visualizations.

We were not able to apply this approach to detect enrichment of

KEGG pathways. While 4,901 KEGG pathways were assigned to at

least one transcript, the largestmajority of themhad less than10anno-

tated transcripts in the final set, resulting in very low power to identify

strongly discriminant KEGG pathways.

3 RESULTS

3.1 Global levels of gene expression

The assessment of global levels of gene expression revealed that

warm incubated embryos have significantly greater amounts

of total RNA than cool incubated ones (mean total RNA per

embryo: 8.97 𝜇g for warm and 7.11 𝜇g for cool incubation tem-

perature; P-value < 0.01, paired t-test). All results below refer to

sequencing and analyses of a standardized amount of total RNA

(seemethods).

3.2 Patterns of variation in gene expression profiles

Principal component analysis showed that the greatest propor-

tion of variation is attributed to differences between populations

(Figure 1b). This first principal component discriminates broadly

between the Italian and French lineages, but also to a lesser extent

between the two French populations. The second principal compo-

nent separates between cool and warm incubation temperatures.

The first and second principal components together explain 48%

of the variation in the dataset, while the third and fourth explain

https://trinotate.github.io/
https://transdecoder.sourceforge.net/;
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10 and 6%, respectively. Notably, the two French populations sepa-

rate parallel to the dimensions that discriminate between Italian and

French lineages and perpendicular to the dimensions that separate

cool and warm incubation temperatures (Figure 1b). This suggests

that the gene expression differences between the two French pop-

ulations map to the same genes that differentiate between Italian

and French ones, rather than to genes involved in the temperature

response.

These global patterns of variation are confirmed by the comple-

mentary analysis using tSNE projection, which allows low-dimensional

representation of all variation within the dataset. tSNE projection

highlights that gene expression separates clearly between four main

groups of samples corresponding to French versus Italian popula-

tions and cool versus warm incubation temperatures (Figures 1c

and 1d).

3.3 Differential gene expression

Toaddresswhether populations responddifferentially to the cool incu-

bation treatment, we used sleuth to compare a full model with ‘tem-

perature’ and ‘population’ and their interaction term to a reduced

model lacking the interaction term (‘clutch’ was included as main

effect in both models). A likelihood-ratio test (LRT) between the two

models revealed that only three transcripts had a significant inter-

action term (Supporting Information Table S1). Thus, the vast major-

ity of transcriptional responses to different incubation temperatures

are conserved across all populations in this study. Next, we com-

pared the reduced model (both temperature and population as main

effects, but no interaction term) to models that include only one of

both terms. LRT showed that 11,797 transcripts (53% of the tran-

scriptome) are differentially expressed between the two tempera-

tures after correcting for FDR, and 4,632 transcripts (21% of the

transcriptome) are differentially expressed between at least two of

the four populations (most differences naturally fall between the two

broad geographic regions). As illustration, the 20 most differentially

expressed transcripts and their putative homologs in model organ-

isms are given in Table 1 (the full list can be found in the Support-

ing Information File 2). The identity of these transcripts reveals that

they are putatively involved in transcriptional or translational reg-

ulation (‘TATA-binding protein-associated factor’, ‘Transcription fac-

tor’, ‘Eukaryotic translation initiation factor 3 subunit J’), nuclear

import (‘Importin-5′), or chromatin remodeling (‘Chromobox protein

homolog’).

We cross-validated these results with a corresponding analysis

using the DESeq2 software. Applying a full model as described above,

we find seven transcripts with a significant interaction term (includ-

ing the three transcripts identified by sleuth; Table S1).When applying

a reduced model without interaction terms (see above), we find that

8,941 transcripts (41%) are differentially expressed at different incu-

bation temperatures after correcting for FDR, and 3,682 (17%) are dif-

ferentially expressedbetweenpopulations. The identificationof differ-

entially expressed transcripts between the two temperature regimes

is highly consistent between the analyses using sleuth and DESeq2

(Figure 2a).

3.4 Transcript clustering and differential cluster

analysis

WGCNA clustering generated a total of 30 modules, plus an improper

‘grey’ module containing 2,570 transcripts whose expression profile

did not match that of any module. We summarize the expression pro-

files of each module via their first principal components or eigengenes

(Supporting Information Figure S1).

Consistently with single-gene testing, we find that no cluster shows

significant interactions between population and temperature effects

(Supporting Information Table S2). We find significant responses to

temperature in 22 modules, encompassing 16,503 transcripts (75% of

all transcripts included), and significant differences between popula-

tions in 13 modules, encompassing 7,198 transcripts (33% of all tran-

scripts). Nine modules (4,825 transcripts) show significant expression

differences between both incubation temperature and populations.

We find that this overlap between transcripts that respond to tem-

perature and transcripts that show population-specific expression dif-

ferences is slightly lower than the expected product of the two cate-

gories, and this lack of overlap is highly significant (Fisher's exact test,

P-value< 0.001).

Theestimated contributionof between-clutch (i.e., between-family)

variation to total expression variance is highly variable from mod-

ule to module, ranging from almost zero (clusters ‘cyan’ and ‘dark-

green’) to 0.9 (clusters ‘lightcyan’ and ‘darkpurple’; Supporting Informa-

tion Figure S2). Despite variation between modules, we find that the

variance explained by clutch is similar across temperature-sensitive,

population-specific, and non-differentially expressedmodules (Mann–

WhitneyU test, P-values 1 and 0.17, respectively).

3.5 Functional differences in transcripts associated

with temperature-induced expression changes

GOexpress analysis revealed that the transcripts that best discrimi-

nate between the temperature regimes over-represent 74 GO terms

using our significance criteria (see Methods). Of these, 51 GO terms

are assigned to the category ‘biological processes’, 10 to ‘molecular

functions’, and 13 to ‘cellular components’. ‘Biological process’ terms

mainly belong in six distinct areas (Figure 2b): chaperone-mediated

protein folding (e.g., GO:0061077), cell cycle regulation (GO:1901990,

GO:1901987), histone modification (GO:0016571), chromatin orga-

nization (GO:0006333), transcriptional regulation (GO:0006354,

GO:0032784), and translation elongation (GO:0070125,

GO:0006414). Enriched ‘molecular function’ terms (Figure 2c)

include HSPs (GO:0051082), histone acetylation (GO:0008080,

GO:0016407), and transcriptional and translational regulation

(GO:0070063, GO:0003743) but also helicases (GO:0003678), which

may be involved in unwinding double-stranded DNA during either

transcription or mitosis-related processes. Significant ‘cellular compo-

nent’ terms (Figure 2d) indicate an overrepresentation of transcripts

localized in histone acetylation complexes (GO:0000123), as well as

kinetochores and spindle poles (GO:0000776, GO:0000922), which

are necessary for cell-division, and pre-ribosomes (GO:0030684),

which are required for translation. We report the complete list of
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TABLE 1 Top 20most differentially expressed genes between incubation temperatures as detected by sleuth

Most similar gene
in blast search Gene ID q-Value Beta valuea Blast hit metrics Gene description

Human RBP56 TRINITY_DN15646_c0_g1 2.22× 10–28 –1.59 63% identity,
e-value 1.65× 10–11

TATA-binding
protein-associated
factor 15

ChickenHTF4 TRINITY_DN23728_c0_g1 2.43× 10–26 –0.86 86% identity,
e-value 0

Transcription factor
12

Human ZN219 TRINITY_DN20059_c0_g1 9.65× 10–26 0.69 48% identity,
e-value 3.1 × 10–88

Zinc finger protein
219

Human TM269 TRINITY_DN11001_c0_g1 3.10× 10–25 1.50 50% identity,
e-value 3.25× 10–52

Transmembrane
protein 269

Mouse CBX1 TRINITY_DN5704_c0_g1 8.57 × 10–25 –0.64 95% identity,
e-value 2.38× 10–82

Chromobox protein
homolog 1

Bovin SGT1 TRINITY_DN16388_c0_g1 1.42× 10–24 –0.70 71% identity,
e-value 1.85× 10–150

Protein SGT1
homolog

Human IPO5 TRINITY_DN13982_c0_g1 4.94× 10–24 –0.60 95% identity,
e-value 0

Importin-5

NA TRINITY_DN19928_c0_g1 6.47× 10–24 2.48 NA NA

Chicken EIF3J TRINITY_DN7313_c0_g1 1.40× 10–23 -0.77 85% identity,
e-value 1.26× 10–71

Eukaryotic
translation
initiation factor 3
subunit J

NA TRINITY_DN12540_c0_g1 1.40× 10–23 2.06 NA NA

RCC2_HUMAN TRINITY_DN19643_c0_g1 1.59× 10–23 –0.70 93% identity,
e-value 0

Regulator of
chromosome
condensation 2

NA TRINITY_DN12445_c0_g1 1.66× 10–23 –1.24 NA NA

TYB4_MOUSE TRINITY_DN13484_c0_g1 1.73 × 10–23 –0.68 96% identity,
e-value 1.06× 10–20

Thymosin beta 4,
X-linked

DNLI3_HUMAN TRINITY_DN17106_c0_g1 1.73× 10–23 –0.71 78% identity,
e-value 0

DNA ligase 3

NA TRINITY_DN12902_c0_g1 1.87× 10–23 1.77 NA NA

RBP56_HUMAN TRINITY_DN15332_c0_g1 3.24× 10–23 –1.08 85% identity,
e-value 3.54× 10–35

TATA-binding
protein-associated
factor 15

NA TRINITY_DN21991_c0_g1 3.83× 10–23 0.66 NA NA

NA TRINITY_DN8597_c0_g1 4.99× 10–23 2.22 NA NA

NA TRINITY_DN14534_c0_g1 6.10× 10–23 1.81 NA NA

LYPA1_BOVIN TRINITY_DN6006_c0_g1 6.25× 10–23 –0.97 76% identity,
e-value 1.95× 10–51

Lysophospholipase I

aNegative beta values indicate that the transcript is downregulated at cool compared to warm incubation temperature.

GO terms and their enrichment scores in Supporting Information

Table S3.

4 DISCUSSION

We describe for the first time how different incubation tempera-

tures affect the transcriptome of reptilian embryos. We find that

around half of all transcripts are differentially expressed at the

pharyngula stage of wall lizard embryos following sustained exposure

to sub-optimally cool incubation temperatures. This magnitude of

expression differences is comparable to those reported in similar stud-

ies of Drosophila (Sørensen, Schou, Kristensen, & Loeschcke, 2016).

Interestingly, these temperature responses are largely independent

from geographic (and genetic) differentiation in gene expression

observed across populations (one quarter of transcripts showed

significant expression differences across populations). Indeed, the

transcripts that differ between populations are involved in tempera-

ture responses less frequently than expected by chance, showing that

geneswhose expression is up- or downregulatedwith temperature are

less likely to be divergent between populations. Even transcripts with

significant effects of both temperature andpopulation lackpopulation-

specific responses to temperature, as indicated by the lack of signif-

icant interaction terms. Further, PCA and differential expression

results reveal that population differences are mainly caused by fewer

genes showing greater expression differences, whereas temperature

responses involve a much greater number of transcripts undergoing

individually smaller changes. Taken together, these findings suggest

a pervasive impact of temperature on gene expression during lizard

development.
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F IGURE 2 Differentially expressed genes and GO terms associated with most discriminant genes. (A) Proportional Venn diagram showing the
concordance between the analyses of differential gene expression performedwith sleuth andDESeq2. The vastmajority of differentially expressed
transcripts were concordantly identified by both analyses (8,874 transcripts). A total of 2,923 and 67 transcripts were identified by sleuth and
DESeq2 alone, respectively. Proportionate Venn diagram was produced using BioVenn (Hulsen, de Vlieg, & Alkema, 2008). (B–D) Visual represen-
tation of semantic similarities in GO terms that were identified to be significantly (P-value < 0.01) associated with temperature-responsive tran-
scripts by the GOexpress analysis. Plots were producedwith customized R-scripts obtained from REVIGO (Supek et al., 2011). Each panel summa-
rizes non-redundant sets ofGO terms from the threemainGOcategories biological process (B),molecular function (C), and cellular component (D).
Each circle represents a GO term with its color corresponding to the P-value assigned to temperature sensitivity (deep red highly significant and
white less significant, but still lower than 0.01), and its size indicates the frequency of the GO term in the UniProt database (smaller size indicates
less frequently assigned GO term). Names are only given for GO terms with ‘dispensability’ values smaller than 0.5 [Color figure can be viewed at
wileyonlinelibrary.com]

These results have a number of important biological implications.

First, they suggest a strong influence of incubation temperature on

physiological processes as evidenced by the reduced level of total RNA

in cool-incubated embryos (reduced by approximately 20% compared

tobenign temperature). At themolecular level,we find that termsasso-

ciated with ribosome production and functioning (e.g., GO:0006364;

e.g., RRP5, NOL6, and UTP4) are enriched in embryos exposed to cold

temperature. This suggests that the rate of translation of mRNA into

protein is affected by temperature, possibly counter-acting decreased

transcriptional rates. Differential expression of ribosomal proteins and

RNAs have been observed in a wide variety of animals in response

to both cold (Long et al., 2012; Xiao, Wang, Cao, & Zhang, 2016) and

warm (Liu et al., 2017; Prado-Lima & Val, 2016; Quinn, McGowan,

Cooper, Koop, & Davidson, 2011) temperatures, yet only one study

(Long et al., 2013) provides indirect evidence that they may increase

resistance to temperature stress. In that study, zebrafish larvae accli-

mated to cold temperatures for 24 hr show both increased expres-

sion of ribosomal genes and increased survival to acute cold stress.

Interestingly, increased expression of ribosomal genes is not found

in zebrafish embryos which experience only acute cold stress (Long

et al., 2012; Long et al., 2013), supporting the hypothesis that riboso-

mal genes may be involved in acclimation rather than stress response.
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Ifweassume that this explanation is valid andapplicable toother verte-

brates, we can explain the increase in ribosomal expressionweobserve

in lizard embryos as a form of acclimation to cold temperature. How-

ever, further studies are necessary in order to determine if increased

ribosomal expression increases the survival of lizard embryos in cold

environments and, if so, whichmolecular mechanisms are involved.

Second, the putatively assigned functions of differentially

expressed transcripts also point to a large impact of temperature

on transcription. For example, we consistently identified transcrip-

tional regulators and elongation factors as discriminant factors

between the temperature regimes. Temperature stress also triggered

changes in the expression of genes involved in chromatin remodeling

(nucleosome organization and histone modification), which have the

potential to affect gene regulation on a global scale (for an introduc-

tion to epigenetics see Allis, Caparros, Jenuwein, & Reinberg, 2015).

These results suggest that chromatin remodeling may play a role in

the repertoire of epigenetic changes in response to stressfully low

incubation temperatures. In support of this hypothesis, a study on

wall lizards found reduced DNA methylation levels in the brain tissue

of hatchlings that were incubated at stressfully cool, compared to

benign, warm temperatures (Paredes, Radersma, Cannell, While, &

Uller, 2016). We thus hypothesize that DNA methylation, histone

(tail) modification, and chromatin organization are all affected by

incubation temperature, potentially contributing to the long-lasting

effects of incubation temperature on morphology, physiology, and

behavior (Noble et al., 2018).

Several additional functions could also be assigned to differently

expressed transcripts. For example, we found molecular chaperones

(GO:0051082; e.g., Hsp90, Hsp72, Hsp40, and NMP1) were upreg-

ulated under thermal stress. This is consistent with previous stud-

ies, which have found that molecular chaperones are reliable predic-

tors of whether an embryo has been exposed to cold stress (e.g., Long

et al., 2012). Within those, we found that the Hsp90 family was the

most reliable predictor (GO:0051879, P-value < 0.001), whereas the

Hsp70 family (GO:0030544, P-value = 0.96), exhibited very limited

discriminatory power between the temperature treatment. There is

overwhelming evidence that HSPs assist the folding of other proteins

under stressful thermal conditions (Horvath, Multhoff, Sonnleitner, &

Vigh, 2008; Vabulas, Raychaudhuri, Hayer-Hartl, & Hartl, 2010), thus

increasing the organism's operational range. It is therefore likely that

theseproteinsmay represent compensatory transcriptomic changes to

the thermal challenge.

Enrichment analyses also revealed a consistent over-

representation of gene ontologies associated with mitotic cell-cycle

control among temperature-responsive genes (i.e., negative regulation

ofmitotic cell-cycle transition, GO:0045930 [e.g., MD2L1, HDC, ABL1,

and PTPN3], and positive regulation of cell cycle phase transition,

GO:1901989 [e.g., CDC7 and TIM]). These findings can be explained

in at least two ways. It is possible that lower temperatures disrupt

cell-cycle regulation, leading to an increased production of regulators

to maintain cell division. Alternatively, an increase in the rate of

mitotic division could partly offset the slow-down of developmental

rates induced by cooler temperatures, helping embryos to complete

development. While we cannot rule out the alternative of buffering

dysregulation without functional genomics data, our analyses are

in agreement with a previously suggested role of the TOR signaling

pathway (GO:0032007; e.g., UBR1 and -2, TSC2, and DEPD5) as the

potential modulator of cell-cycle acceleration in response to stressful

conditions (Long et al., 2012).

With the possible exception of heat shock proteins, we cannot

establish if the relative up- or downregulation of genes at low tem-

perature is the result of compensatory changes that help to sus-

tain development, or if they result from unbuffered thermal sensi-

tivity. Even if we assume (conservatively) that most of the observed

responses belong to the latter, our data show a substantial amount

of variation both between populations and clutches. Whether this

variation can contribute to adaptation will depend on whether it

is heritable and how much it affects fitness. It is also worth not-

ing that changes in gene expression profiles accompanying acclima-

tion to sustained sub-optimally low temperatures are qualitatively dif-

ferent from those associated with fluctuating temperatures in both

Drosophila flies (Sørensen et al., 2016) and killifish (Podrabsky &

Somero, 2004). This indicates that the mechanisms underlying quick

responses to stressful temperatures are qualitatively different from

the mechanism underlying more long-term acclimation to suboptimal

temperatures. Extending to evolutionary timescales, it is not obvious

if adaptation to extreme temperatures mainly capitalizes on expres-

sion changes of genes involved in long-term acclimations or short-

term stress responses. Our previous study detected local adaptation

to cool temperature in non-native lizard embryos. We found that

genes responding to selection in the non-native lizards were enriched

for genes whose expression levels changed with long-term acclima-

tion to cool temperatures in the native populations (Feiner et al.,

2018). This is expected if natural selection capitalizes on the abil-

ity of individuals to acclimatize to low temperatures, but alternative

hypotheses cannot be ruled out at present (see Feiner et al., 2018 for

discussion).

In summary, this study is a first step in the systematic character-

ization of transcriptomic responses of reptilian embryos exposed to

sustained low incubation temperatures. While around half of all tran-

scripts responded to incubation temperature, we identified key com-

ponents of transcriptional and translational regulation, as well as chro-

matin remodeling components among the most highly differentially

expressed genes. We propose that differentially expressed chromatin

modifiers modulate gene expression and allow embryos to acclimate

to stressful incubation temperatures. Studies that combine experi-

ments of developmental thermal plasticitywith an examination of their

underlying molecular mechanisms have a role to play in furthering our

understanding of how individuals acclimate and populations adapt to

thermal stress.
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