1	RT: Telomere length in reptiles
2	
3	Telomere length covaries with age across an elevational gradient in a
4	Mediterranean lizard
5	
6	
7	Pablo Burraco ^{1,2*} Mar Comas ^{3,4} Senda Reguera ³ Francisco Javier Zamora-Camacho ⁵
7	Tablo Durraco , Iviar Comas , Schua Reguera , Francisco Savier Zamora-Camacito ,
8	Gregorio Moreno-Rueda [~]
9	¹ Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre,
10	Uppsala University, Norbyvägen 18D, SE-75236 Uppsala Sweden
11	² Ecology, Evolution and Development Group, Doñana Biological Station (CSIC, Spain).
12	³ Departamento de Zoología, Facultad de Ciencias, Universidad de Granada (Spain)
13	⁴ Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio 26, Seville E-41092,
14	(Spain).
15	⁵ Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales
16	(CSIC, Spain)
17	
18	*Corresponding authors: pablo.burraco@ebc.uu.se
19	
20	Keywords: altitude, body condition, ectotherms, growth, reptiles, senescence, telomere
21	shortening
22	
23	
24	
25	

26 Abstract

27 The timing of organisms' senescence is developmentally programmed but also shaped by the 28 interaction between environmental inputs and life-history traits. In ectotherms, ageing 29 dynamics are still poorly understood despite their particularities concerning thermoregulation, 30 regeneration capacity, or growth trajectory. Here, we investigate the role of life-history traits 31 such as age, sex, body size, body condition, and tail autotomy (i.e self-amputation) in shaping 32 telomere length of six populations of the Algerian sand lizard (*Psammodromus algirus*) 33 distributed across an elevational gradient from 300 to 2500 meters above the sea level. 34 Additionally, we show in a review table the available information on reptiles' telomere 35 length. We found that telomeres elongated with lizards' age. We also observed that body size 36 and age class showed a positive relationship, suggesting that cell replication did not shorten 37 lizards' telomeres by itself. Elevation affected telomere length in a non-linear way, a pattern 38 that mirrored the variation in age structure across elevation. Telomere length was unaffected 39 by tail autotomy, and was sex-independent, but positively correlated with body condition. Our 40 results show that telomeres elongate throughout the first four years of lizards' lifetime, a 41 process that stress the role of telomerase in maintaining ectothermic telomeres, and, likely, in 42 extending lifespan in organisms with indeterminate growth. Regarding the non-linear impact 43 that elevation had on telomere length of lizards, our results suggest that habitat (mainly 44 temperature) and organisms' condition might play a key role in regulation ageing rate. Our 45 findings emphasize the relevance of understanding species' life histories (e.g. age and body 46 condition) and habitat characteristics for fully disentangling the causes and consequences of 47 lifespan trajectory.

48

49

50

51 Introduction

52	The match between phenotypes and the environment not only defines species distribution
53	(Sih, Ferrari, & Harris, 2011; Zamudio, Bell, & Mason, 2016) but also individual lifespan
54	(Monaghan, 2007; Marasco et al., 2017; Ratikainen & Kokko, 2019). The study of the
55	evolutionary underpinnings of ageing has been a long-standing topic both in ecological and
56	medical research, pointing out mitochondrial activity and its underlying damages as the main
57	drivers of individual variation in life expectancy across taxa (Selman, Blount, Nussey, &
58	Speakman, 2012; Ziegler, Wiley, & Velarde, 2015; Vágási et al., 2019). Most studies on
59	ageing in vertebrates have been conducted in endotherms whereas ectotherms have received
60	scarce attention despite their singularities concerning thermoregulation, regeneration capacity,
61	metabolism, or growth trajectory (Olsson, Wapstra, & Friesen, 2018; Monaghan, Eisenberg,
62	Harrington, & Nussey, 2018). Understanding the role of environmental conditions and life-
63	histories on shaping senescence in ectothermic vertebrates would increase the current
64	knowledge about their evolutionary and ecological dynamics.
65	A reliable way for addressing individual ageing is through estimates of telomere
66	length (Horn et al., 2011; Bateson, 2015; Angelier, Weimerskirch, Barbraud, & Chastel,
67	2019). Telomeres are non-coding repeated sequences (TTAGGG _n in vertebrates) located at
68	the termini of chromosomes, essential for maintaining genomic stability and for protecting
69	cells from chromosome degradation and fusion (O'Sullivan & Karlseder, 2010). Telomeric
70	sequences shorten after each cell replication due to the end replication problem, which occurs
71	once the last piece of RNA primer is removed during replication and DNA cannot be
72	extended (Allsopp et al., 1995). Hence, more cell replications may involve shorter length of
73	telomeres. Consequently, telomere length should decrease with age, as often observed in
74	mammals and birds (Haussmann et al., 2003; Heidinger et al., 2012). When telomeres become
75	very short, apoptosis is induced (Aubert & Lansdrop, 2008). However, the expression of

76	telomerase, a reverse transcriptase enzyme that adds repeat sequence to the 3' end of
77	telomeres, can either partially or fully restore telomere erosion. Telomerase expression is
78	often detected in the germline and in embryonic tissues both in endotherms and ectotherms
79	(Ingles & Deakin, 2016). Particularly in ectothermic vertebrates, telomerase is not only active
80	early in life, but also in adult somatic tissues, like in the fish medaka (Oryzias latipes;
81	Klapper, Heidorn, Kühne, Parwaresch, & Krupp, 1998) or in the African water frog (Xenopus
82	laevis; Bousman, Schneider, & Shampay, 2003). In this line, telomere elongation has been
83	found throughout larval development of the Atlantic salmon (Salmo salar, McLennan et al.,
84	2016) and of the common water frog (Rana temporaria; Burraco et al., submitted), and also
85	during the first years of life in some reptiles (e.g. Olsson, Pauliny, Wapstra, & Blomqvist,
86	2010; Ujvari et al., 2017). In endotherms, telomere elongation after birth is not widespread
87	and takes place under very particular conditions, as during the active season of the edible
88	dormouse (Glis glis; Hoelzl, Cornils, Smith, Moodley, & Ruf, 2016), or in some long-lived
89	birds ("elongation hypothesis", see Haussmann & Mauck, 2007).
90	Such differences in telomere dynamics between ectothermic and endothermic
91	vertebrates might be linked to organisms' thermoregulation capacity and growth trajectories
92	(typically, indeterminate growth in ectotherms versus determinate growth in endotherms), and
93	explain lifespan across species (Jones et al., 2014). In reptiles, a paraphyletic group, 11
94	studies have investigated the variation in telomere length across individuals' lifetime (Table
95	1). Four studies found that telomeres shorten with age, whereas in three cases telomere length
96	increased with age in any of the two sexes (Table 1). A quadratic sex-dependent relationship
97	between telomere length and age was observed in two studies, i.e. telomeres increase their
98	length until a certain age, and then shorten (Table 1). Meanwhile, three studies found no
99	effect of age on telomere length in reptiles (Table 1). The high inter-species variation

regarding the relation between telomere length across reptiles' lifetime highlights the need offurther research to unravel it.

102	Telomere length, at a given ontogenetic point, is not only a function of cell replication
103	but also of the organisms' ability to cope with stress across their life. In vertebrates, harmful
104	conditions often enhance glucocorticoids secretion, which involve metabolic processes that
105	provoke the overproduction of reactive oxygen species (ROS). This overproduction of ROS
106	induces an oxidative state in cells that can damage essential biomolecules like lipids, proteins
107	or DNA (Isaksson, 2015; Luceri et al., 2018), including telomeres (Haussman & Marchetto,
108	2010; Monaghan, 2014; Angelier, Costantini, Blevin, & Chastel, 2018). As a consequence,
109	telomere length is a reliable indicator of the amount of stress accumulated by organisms
110	across time (Young, 2018). Indeed, positive relationships between telomere length and
111	organisms' life expectancy (Barret, Burke, Hammers, Komdeur, & Richardson, 2013;
112	Wilbourn et al., 2018), reproductive outcome (Eastwood et al., 2019), or immunocompetence
113	(Alder et al., 2018) are well established. In ectothermic vertebrates, telomere shortening is
114	commonly associated with increased growth rate, bold personality, or predator exposure
115	(reviewed in Olsson et al. 2018). Particularly in reptiles, telomere length positively correlates
116	with social signalling, reproductive output and mode, or lifespan whereas it is unaffected by
117	foraging behaviour or by ectoparasite load (Table 1). One might expect telomeres to shorten
118	as body size increases across lifetime since it implies more cellular replications. However,
119	only a few studies on reptiles have observed a significant effect of body size or growth rate on
120	telomere length (Table 1), unlike in fish (McLennan et al. 2016) or amphibians (Burraco,
121	Díaz-Paniagua, & Gomez-Mestre, 2017a).
122	Here, we aim to understand the role of life-history traits and environmental conditions
123	on ageing of a lizard species. To this end, we investigated the effect of age, sex, body size,

124 and body condition on telomeres across six populations of the Algerian sand lizard

125	(Psammodromus algirus) across a substantial mountain gradient (from 300 to 2500 metres
126	above sea level, m.a.s.l thereafter). We predicted an effect of age class and body size on
127	telomere length, either in a positive, negative, or quadratic way, which may be sex-linked,
128	regarding the available literature on reptile telomeres (Table 1). The elevational gradient
129	studied here allows to determine to which extent environment can influence telomere
130	dynamics in lizard populations. As we ascend in altitude, temperature and activity time
131	decrease while hibernation time increases (Zamora-Camacho, Reguera, Moreno-Rueda, &
132	Pleguezuelos, 2013), which may induce lower telomere attrition (Hoelzl et al. 2016; Kirby,
133	Johnson, Alldredge, & Pauli, 2019). Also, at higher elevations, lizards are exposed to
134	conditions that might reduce telomere shortening such as low risk of overheating (Zamora-
135	Camacho, Reguera, & Moreno-Rueda, 2016) or low ectoparasitism (Álvarez et al., 2018). In
136	addition, oxidative damage -one of the main drivers of telomere attrition (Reichert & Stier,
137	2017)- decreases at higher elevation (Reguera, Zamora-Camacho, Trenzado, Sanz & Moreno-
138	Rueda, 2014, Reguera et al., 2015). Therefore, we predict that, once corrected for age,
139	populations at higher elevation would have longer telomeres.

140

141 Material and methods

142 General procedures

The lizard *P. algirus* is a medium-large lacertid (53-80 mm snout-vent length –SVLin our study area) that inhabits shrubby habitats in the Mediterranean region from southwestern Europe and north-western Africa (Salvador, 2015). In the Sierra Nevada mountain system (SE Spain), we sampled individuals from six populations, which inhabit at 300, 700, 1200, 1700, 2200, and 2500 m.a.s.l. (Fig. 1). In total, we caught 106 individuals (50 males and 56 females): 7 in 2010, 28 in 2011, 65 in 2012 and 6 in 2013. Because lizards were part of a long-term study, we marked individuals by toe clipping, a marking method frequently

150 used in lizards, and that have limited impact on their fitness (Perry, Wallace, Perry, Curzer, & 151 Muhlberger, 2011). We conserved toe samples in ethanol and used them for age class 152 determination using phalanx skeletochronology (more details below). We collected a portion 153 of the terminal region of lizards' tail (~ 1 cm) in the field and immersed it in an Eppendorf 154 tube filled with 1.5 mL of absolute ethanol for genetic analyses. Lizards regenerate lost tails, 155 so the small portion we sampled should have had no effects on lizard fitness or welfare. We 156 took special care to disinfect the wounds caused by both toe clipping and tail sampling with 157 chlorohexidine closing the wounds with a tissue adhesive glue (Dermabond[®]). 158 We measured lizard body mass with a digital balance (Model Radwag WTB200; to the 159 nearest 0.01 g) and SVL with a metal ruler (to the nearest 1 mm). We estimated the body 160 condition index (BCI) as the residuals of the regressing log mass on log SVL. This widely 161 used index represents the relative energy reserves of an animal (Schulte-Hostedde, Zinner, 162 Milar, & Hickling, 2005). We also recorded whether the tail was intact or regenerated. Males 163 were distinguished from females mainly because they have more femoral pores in their hind 164 limbs (Iraeta, Monasterio, Salvador, & Diaz, 2011) and an orange spot in the corners of their 165 mouths (Carretero, 2002). Gravid females, recognized by palpation of developing eggs inside 166 the trunk, were translated to a lab and placed in individual terrariums $(100 \times 20 \times 40 \text{ cm})$ with a 167 heat cable at one end of the cage, switched on three hours a day (11 h-14 h) to allow 168 thermoregulation, indirect access to sun light, and water (in form of aqueous nutritious gel) 169 and food (Tenebrio molitor larvae) ad libitum. Substrate was bare soil from the study area. 170 We maintained eggs laid in terrariums until hatching. Then, we took a portion of tail of 171 hatchlings for genetic analyses (see below). In order to avoid pseudoreplication, only one 172 neonate per litter (N = 37) was used in the analyses. Females and their neonates were released 173 at the point the female was caught. No lizard died or suffered permanent pain during the 174 study.

175

176 Telomere length measurement

177	Once in the laboratory, we stored tail samples at -20 °C until assayed. We extracted
178	DNA from epidermis using a high-salt DNA extraction protocol. Since storage conditions,
179	extraction method, or tissue type can affect telomere length measures (Nussey et al., 2014) we
180	used the same conditions for all samples to avoid confounding factors.
181	We quantified relative telomere length through quantitative polymerase chain
182	reactions (qPCRs), which is one of the most widely used method for estimating telomere
183	length (Nussey et al., 2014). We compared the cycle threshold (C_t) of telomeric sequences
184	with the C_t of a control sequence that is autosomal and non-variable in copy number
185	(Cawthon, 2002, Nussey et al., 2014). As a reference sequence, we amplified GAPDH
186	sequences using 5'-AACCAGCCAAGTACGATGACAT-3' (GAPDH-F) and 5'-
187	CCATCAGCAGCAGCCTTCA-3' (GAPDH-R) as forward and reverse primers, respectively.
188	For telomere sequences, we used
189	5'CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTT-3' (Tel1b) and 5'-
190	GGCTTGCCTTACCCTTACCCTTACCCTTACCCT-3' (Tel2b) as forward and
191	reverse primers, respectively. Conditions of qPCR for GAPDH fragment consisted of 10 min
192	at 95 °C and 40 cycles of 10 sec at 95 °C, 20 secs at 58 °C, and 1 min at 72 °C, and for
193	telomere fragment of 10 min at 95 °C, and 10 secs at 95 °C, 20 secs at 58 °C, and 1 min at 72
194	°C. We conducted qPCR assays for each gene in separate plates on a LightCycler 480
195	(Roche) and ran a melting curve from 65 to 95 °C, as a final step in each qPCR to check for
196	specific amplicons. For each sample, we added 20 ng of genomic DNA and used both set of
197	primers at a final concentration of 100nM in a 20 μL master mix containing 10 μL of Brilliant
198	SYBR Green (QPCR Master Mix, Roche). All samples were run in duplicate. Samples with
199	coefficient of variation higher than 5 % were measured again. We calculated qPCR-plates

200	efficiency by including five serial diluted standards in triplicate, obtained from a golden
201	standard sample containing a pool of samples from all populations. We calculated the relative
202	telomere length by applying the following formula (Pfaffl, 2001): $[(E_{telomere})^{\Delta Ct \text{ telomere (control-}})^{\Delta Ct \text{ telomere (control-})}]$
203	$^{sample)}]/[(E_{GAPDH})^{\Delta Ct \ GAPDH \ (control-sample)}];$ where $E_{telomere}$ and E_{GAPDH} are the qPCR efficiency of
204	telomere and GAPDH fragment, respectively; ΔCt telomere (control-sample) and ΔCt
205	GAPDH (control-sample) are the deviation of standard – telomere or GAPDH sequences for
206	each sample, respectively. Efficiencies of qPCR were 1.99 ± 0.02 and 1.93 ± 0.02 for
207	GAPDH and telomere fragments, respectively.
208	
209	Estimation of age class with skeletochronology
210	We estimated individual age class by phalanx skeletochronology (Comas, Reguera,
211	Zamora-Camacho, Salvadó, & Moreno-Rueda, 2016), one of the most accurate techniques to
212	estimate age in many vertebrates, including reptiles (Zhao, Klaassen, Lisovski, & Klaassen,
213	2019). Vertebrate ectotherms show indeterminate growth, and consequently present a cyclic
214	growth pattern in hard body structures such as bones, corresponding to alternate periods of
215	growth and resting. This pattern is particularly marked in temperate climates, where age can
216	be fairly estimated by counting annual growth rings in the phalanges (Comas et al. 2016).
217	Growth rings are called lines of arrested growth (LAGs). Toes sampled were decalcified in
218	3% nitric acid for 3 h and 30 min. Cross-sections (10 μm) were prepared using a freezing
219	microtome (CM1850 Leica), stained with Harris hematoxylin for 20 min and dehydrated
220	through an alcohol chain (more details in Comas et al. 2016). Next, cross-sections were fixed
221	with DPX (mounting medium for histology), mounted on slides, and examined for the
222	presence of LAGs using a light microscope (Leitz Dialux20) at magnifications from 50 to

223 125x. We took several photographs (with a ProgresC3 camera, at the University of Barcelona

224 UB) of various representative cross-sections, discarding those photographs in which cuts

were unsuitable for observing LAGs. The number of LAGs detected in the periosteal bone
was independently and blindly counted three times by a single observer (MC) on three
independent occasions.

228

229 Statistical analysis

230 We confirmed that the residuals of the models met parametric assumptions (Quinn & 231 Keough 2002). In order not to violate those assumptions, we log-transformed relative 232 telomere length, body mass, and body condition data. We examined the presence of outliers 233 through a Cleveland plot (Zuur, Ieno, & Elphick, 2010), which revealed that an individual had 234 an extremely abnormal low value of relative telomere length, so we decided to omit this data 235 from all the analyses. We performed a linear model to check for differences in telomere 236 length according to the year of capture in order to evaluate possible cohort effects. Since we 237 sampled lizards with intact tail (n = 44) and regenerated tail (n = 58), and tail regeneration 238 could affect the length of telomeres in tail tissue (Anchelin, Murcia, Alcaraz-Perez, Garcia-239 Navarro, & Cayuela, 2011; Tan et al. 2012; Alibardi, 2016), we tested whether there were 240 differences in relative telomere length between lizards with intact or regenerated tail through 241 linear models. We also performed linear models to examine the effect of sex, age class, and 242 elevation on the relative telomere length. We examined the relationship between relative 243 telomere length and body mass or length, and also between telomere length and age class 244 Pearson correlations. We checked for the independent effect of elevation and age class on 245 relative telomere length by conducting a linear model, in which the effect of sex nor autotomy 246 were not significant and we discarded this variable from the full model. Additionally, we 247 conducted a model selection attending to Akaike information criterion (AIC; Akaike, 1973), 248 and following the recommendations of Burnham & Anderson (2002). The full model 249 contained all measured variables, i.e. elevation, body condition, age class, SVL, sex, tail

autotomy, and year of capture. We generated 128 models and calculated the model average of
the top 2-AIC models. All statistical analyses were conducted in Statistica software (version
8.0).

253

254 **Results**

Lizards did not show sexual dimorphism in body mass ($F_{1, 102} = 0.11$, P = 0.74) and sexes did not differ in the distribution of age classes ($F_{1, 103} = 1.70$, P = 0.20). The frequency of male and female lizards did not differ across lizard populations ($\chi^2 = 7.35$, P = 0.69). Relative telomere length did not differ between sexes ($F_{1, 103} = 0.30$, P = 0.59; Figure 2A) and neither with the year of capture ($F_{3, 101} = 0.45$, P = 0.72). The frequency of lizards with autotomized tails did not vary among lizard populations ($\chi^2_5 = 1.36$, P = 0.93), and tail autotomy did not

affect lizard telomere length ($F_{1, 100} = 0.00$, P = 0.99; Figure 2B).

262 Relative telomere length increased with age class, at least until the fourth year ($F_{5,136}$) 263 = 3.21, P = 0.009, Fig. 3). In individuals with five years, telomeres tended to shorten, but we 264 only sampled two lizards with this age class. Spearman correlations between telomere length 265 and age showed similar results (r = 0.24, P = 0.003, including neonates, N = 147; r = 0.19, P 266 = 0.047, without neonates, N = 105). Age correlated positively with body mass (r = 0.57, P < 0.57267 0.001), which is common in organisms with indeterminate growth like lizards. Likewise, 268 larger individuals had longer telomeres (r = 0.26, P = 0.007; Fig. 4), which confirms that 269 telomeres did not shorten by cell replication, but elongated, in those larger and older 270 individuals. Relative telomere length tended to increase with body condition (r = 0.18, P =271 0.067). This relationship became significant (r = 0.20, P = 0.043) when a possible outlier –an 272 individual with very high body condition, indicated by the Cleveland plot- was removed (Fig. 273 5A). Body condition increased with elevation ($F_{5,98} = 3.03$, P = 0.014; Fig. 5B).

274 Lizard telomere length among lizard populations inhabiting across an elevational 275 gradient, but following a non-linear pattern ($F_{5,136} = 2.52$; P = 0.03 for all individuals, and 276 $F_{5,99} = 2.07$; P = 0.070 when excluding neonates; Fig. 6). Individuals at 300 and at 2200 277 m.a.s.l. had the longest telomeres. However, average age varied with elevation in a similar 278 way ($F_{5,131} = 5.44$; P < 0.001; Figure S1). When we tested the combined effect of age and 279 elevation on telomere length, the effect of age remained significant ($F_{5,131} = 2.32$; P = 0.047), 280 but the effect of elevation was no longer significant ($F_{5,131} = 1.67$; P = 0.15). Model selection 281 showed that body length (SVL) had the highest explanatory power to understand variation in 282 telomere length in our study system, which is presumably explainable by the positive 283 relationship between telomere length and age. 284 Neonate telomere length, an indicator of the baseline telomere length at birth, varied 285 among populations ($F_{5,31} = 2.91$; P = 0.03), but with no clear pattern; lizard neonates showed 286 the longest telomeres at 2200 m.a.s.l., but the shortest at 1700 m.a.s.l. (Fig. S2). 287 288 Discussion 289 Life-history trade-offs and environmental conditions can shape ageing across taxa 290 (Wilbourn et al., 2018; Eastwood et al., 2019). Here, we show that, in the Algerian sand

291 lizard, telomeres elongated with age until their fourth year. Additionally, larger lizards had

292 longer telomeres. Intriguingly, although lizard populations across this substantial elevational

293 gradient differed in their telomere length, differences were not linear and the variation in

telomere length mirrored the variation in the distribution of age classes across the elevational

295 gradient. On the other hand, telomere elongation was sex-independent, unlike in adults of

- other sand lizard species (Lacerta agilis, Olsson et al., 2011). Sex differences in telomere
- length may result from sex differences in growth rate, body size, and/or age (Olsson et al.,

298 2018). However, in our study system, lizards did not show sexual dimorphism in size or age

299 structure. Autotomy did not affect telomere length despite the fact that differences in the 300 regulation of telomere length may be driven by evolutionary pressures such as predation 301 (Olsson et al., 2010), and also by enhanced cell replication during tissue regeneration. 302 Moreover, no cohort effect was detected, as telomere length did not differ with year of 303 sampling, which validates our cross-sectional study. 304 Telomere elongation observed in lizards across their first four years of life agrees with 305 previous studies in snakes and lizards (Ujvari & Madsen, 2009 and Ujvari et al., 2017, 306 respectively). At the fifth year, telomeres tended to shorten, although this result should be 307 interpreted carefully because we only collected two five-year-old individuals. Telomere 308 length showed a positive relationship both with age and body size, suggesting that cell 309 replication does not shorten telomeres by itself. This finding adds to previous studies showing 310 that ectotherms, unlike endotherms, often show telomere elongation along their lifetime 311 (Olsson et al., 2018). Such contrasting pattern of telomere dynamics in ectotherms may be 312 related to a higher telomerase expression after birth in somatic cells in ectotherms than in 313 endotherms (Gomes, Shay, & Wright, 2010). Hence, telomerase may be relevant for buffering 314 downstream effects of ROS in organisms with indeterminate growth such as lizards (Jones et 315 al. 2014). However, telomerase expression may not be enough to protect from telomere 316 shortening in ectothermic vertebrates. For instance, telomerase is expressed in tissues of adult 317 medaka fish (Klapper et al. 1998) but telomeres shorten with age (Hatakeyama et al., 2008). 318 Furthermore, the maintenance of telomerase expression in species with indeterminate growth 319 can imply a trade-off suggested by a higher cancer occurrence in ectotherms (Gomes et al., 320 2010; Olsson et al. 2018), however, the knowledge about cancer in wildlife is still meagre. 321 Mountains cover *circa* a quarter of the Earth's surface (Körner, 2007). Elevational 322 gradients are characterised by deep changes both in biotic and physical conditions, such as 323 competitor and/or predators' abundance, temperature, or ultraviolet radiation (Barry, 2008).

324	Previous research demonstrated a broad number of physiological adaptations to divergent
325	habitats across altitude (Bozinovic, Calosi, & Spicer, 2011; Keller, Alexander, Holderegger,
326	& Edwards, 2013; Boyle, Sandercock, & Martin, 2016). Such adjustments often imply
327	elevational variation in energy expenditure devoted to reproduction and somatic maintenance,
328	then affecting telomere dynamics (Stier et al., 2016). Also, variation in temperature can
329	involve deep physiological shifts in ectotherms across elevations since their body temperature
330	greatly depends on environmental heat (Angilleta, 2009; Gunderson & Stillman, 2015). In our
331	study, we expected to find shorter telomeres in lizard populations at higher elevation, as we
332	know that higher-altitude lizards undergo reduced activity time and oxidative damage
333	(Zamora-Camacho et al., 2013; Reguera et al., 2014, 2015). However, we found a non-linear
334	variation in telomere length with elevation. The most plausible explanation is that telomere
335	length across elevation mirrored the altitudinal distribution of lizard age. Contrary to our
336	results, Dupoué et al., (2017) found that populations of the common lizard (Zootoca vivipara)
337	inhabiting at low elevations have shorter telomeres and higher extinction risk. In our study
338	system, lowland populations also suffer poor habitat quality, such as low thermal quality (risk
339	of overheating, Zamora-Camacho, Reguera, & Moreno-Rueda, 2016), high ectoparasitism
340	(Álvarez et al., 2018), low food availability (Moreno-Rueda et al., 2018), high oxidative
341	damage (Reguera et al., 2014, 2015), and even high risk of wildfire (Moreno-Rueda, Melero,
342	Reguera, Zamora-Camacho, & Comas, 2019). Additionally, at low elevations, lizards increase
343	their activity time while hibernation time decreases (Zamora-Camacho, Reguera, Moreno-
344	Rueda, & Pleguezuelos, 2013). In spite of all this, lizard populations at lowland did not have
345	shorter telomeres than populations at high elevations.
346	Lizard body condition, temperature, and telomerase expression might have shaped
347	telomere length of lizards inhabiting at different elevations. In this study, body condition of
348	lizards was higher in populations at higher elevation, and correlated positively with telomere

349 length. Telomere length is positively correlated to body condition in other reptiles 350 (*Thamnophis sirtalis*; Rollings et al., 2017). In addition, it is likely a temperature-mediated 351 regulation of telomerase expression, thus at low elevation telomerase might show a higher 352 expression, then compensating for telomere erosion (Olsson et al. 2018). At the highest 353 elevations (mainly at 2200 m.a.s.l.), the reduction in metabolic rate due to cold conditions 354 may have favoured a reduction in the rate of telomere erosion due to a reduced production of 355 ROS, involving an adaptive downregulation of telomerase. Indeed, increases in lifespan are 356 often orchestrated by reductions in metabolic rate (Speakman, 2005), as for example 357 suggested by the straightforward influence of latitude on lifespan of *Rana temporaria* frogs 358 across the Swedish latitudinal gradient (Hjernquist et al., 2012). Furthermore, the variation in 359 the pace-of-life as a consequence of facing particular environmental conditions is also known 360 to alter telomeres, then resulting in complex or unexpected patterns (Giraudeau, Algelier, & 361 Sepp, 2019). For example, shorter telomeres are associated with higher survival in migratory 362 Atlantic salmon (McLennan et al. 2017), thus benefits of experiencing intense telomere 363 erosion can be higher than costs of responding poorly to certain scenarios, such as during 364 migration. Likewise, amphibian larvae surviving predators, which have larger bodies and 365 larger fat reserves, experience telomere shortening as a consequence of growing faster due to 366 relaxed intraspecific competition (Burraco et al. 2017a). In our system, other factors like 367 diseases or intraspecific interactions might have also modulated ageing in lizards. A cross-368 fostering approach would help to fully clarify the evolutionary impact of both environment 369 and life-history traits on telomeres of this lizard metapopulation. 370

371 Conclusions

Our results show that telomeres elongate throughout the first four years of lizards' lifetime, aprocess that stress the role of telomerase in maintaining ectothermic telomeres, and, likely, in

374	extending lifespan in organisms with indeterminate growth. Habitat features and repair
375	mechanisms at different habitats may be relevant for understanding telomere dynamics in
376	ectothermic vertebrates. This study also shows that telomere length can follow a complex
377	trajectory across habitats occupied by an ectothermic vertebrate, as across a substantial
378	altitudinal gradient. Our results emphasize the relevance of understanding species' life
379	histories (e.g. age and body condition) and habitat characteristics for disentangling the causes
380	and consequences of lifespan trajectory.
381	
382	Authors' contribution
383	GMR, MC and PB conceived the idea; SR and FJZC performed the sampling; MC and SR
384	carried out the histological labwork and data analysis of skeletochronology; PB carried out
385	the telomere length analysis; GMR and PB performed the statistical analyses; PB wrote the
386	manuscript with inputs from GMR, MC, SR and FJZC.
387	
388	Acknowledgements
389	PB was supported by fellowship F.P.UAP2010-5373, and by the Carl Tryggers Foundation
390	project CT 16:344. FJZC (F.P.UAP2009-3505) and SR (F.P.UAP2009-1325) also were
391	supported by respective fellowships. MC was supported by a Severo Ochoa contract (SVP-
392	2014-068620). This study was economically supported by the Ministerio de Ciencia e
393	Innovación (project CGL2009-13185). The study complies with the current laws of Spain,
394	and were performed in accordance with the Junta de Andalucía and Sierra Nevada National
395	Park research permits (references GMN/GyB/JMIF and ENSN/JSG/JEGT/MCF). We are
396	grateful to Concepción Hernández (Centre of Scientific Instrumentation of the University of
397	Granada) for her help with the freezing microtome, Humbert Salvadó (Universitat of
398	Barcelona) for let us to use his microscopy for this study, and Francisco Miranda

399	(Ecophysiology Laboratory of Doñana Biological Station) for assistance with the telomere
400	assays. We also thank the personnel from the Espacio Natural de Sierra Nevada for their
401	constant support.
402	
403	Data accessibility
404	Data will be accessible at FigShare upon manuscript acceptance
+0+	Data will be accessible at rightare upon manuscript acceptance.
405	
406	
407	References
408	Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving
409	average models. Biometrika, 60(2), 255-265.
410	Alder, J. K., Hanumanthu, V. S., Strong, M. A., DeZern, A. E., Stanley, S. E., Takemoto, C.
411	M., & Brodsky, R. A. (2018). Diagnostic utility of telomere length testing in a
412	hospital-based setting. Proceedings of the National Academy of Sciences, 115(10),
413	E2358-E2365. https://doi.org/10.1073/pnas.1720427115
414	Alibardi, L. (2016) Immunocalization of telomerase in cells of lizard tail after amputation
415	suggests cell activation for tail regeneration. Tissue Cell, 48, 63-71.
416	https://doi.org/10.1016/j.tice.2015.10.004
417	Allsopp, R. C., Chang, E., Kashefi-Aazam, M., Rogaev, E. I., Piatyszek, M. A., Shay, J. W.,
418	& Harley, C. B. (1995). Telomere shortening is associated with cell division in vitro
419	and in vivo. Experimental Cell Research, 220(1), 194-200.
420	https://doi.org/10.1006/excr.1995.1306
421	Álvarez-Ruiz, L., Megía-Palma, R., Reguera, S., Ruiz, S., Zamora-Camacho, F. J., Figuerola,
422	J., & Moreno-Rueda, G. (2018). Opposed elevational variation in prevalence and
423	intensity of endoparasites and their vectors in a lizard. Current Zoology, 64(2), 197-
424	204. https://doi.org/10.1093/cz/zoy002
425	Anchelin, M., Murcia, L., Alcaraz-Perez, F., Garcia-Navarro, E. M., Cayuela, M. L. (2011)
426	Behaviour of telomere and telomerase during aging and regeneration in zebrafish.
427	PLoS One, 6, e16955. https://doi.org/10.1371/journal.pone.0016955
428	Angelier, F., Costantini, D., Blevin, P., & Chastel, O. (2018). Do glucocorticoids mediate the
429	link between environmental conditions and telomere dynamics in wild vertebrates? A

430	review. General and Comparative Endocrinology, 256, 99-111.
431	https://doi.org/10.1016/j.ygcen.2017.07.007
432	Angelier, F., Weimerskirch, H., Barbraud, C., & Chastel, O. (2019). Is telomere length a
433	molecular marker of individual quality? Insights from a long-lived bird. Functional
434	Ecology. https://doi.org/10.1111/1365-2435.13307
435	Angilletta Jr, M. J. (2009). Thermal adaptation: a theoretical and empirical synthesis. Oxford
436	University Press.
437	Aubert, G., & Lansdorp, P. M. (2008). Telomeres and aging. Physiological Reviews, 88(2),
438	557-579. https://doi.org/10.1152/physrev.00026.2007
439	Barrett, E. L., Burke, T. A., Hammers, M., Komdeur, J., & Richardson, D. S. (2013).
440	Telomere length and dynamics predict mortality in a wild longitudinal
441	study. Molecular Ecology, 22(1), 249-259. https://doi.org/10.1111/mec.12110
442	Barry, R. G. (2008). Mountain weather and climate, - Cambridge University Press. New
443	York.
444	Bateson, M. (2016). Cumulative stress in research animals: telomere attrition as a biomarker
445	in a welfare context? BioEssays, 38(2), 201-212.
446	https://doi.org/10.1002/bies.201500127
447	Bousman, S., Schneider, G., & Shampay, J. (2003). Telomerase activity is widespread in adult
448	somatic tissues of Xenopus. Journal of Experimental Zoology Part B: Molecular and
449	Developmental Evolution, 295(1), 82-86. https://doi.org/10.1002/jez.b.7
450	Boyle, W. A.; Sandercock, B. K.; Martin, K. (2016). Patterns and drivers of intraspecific
451	variation in avian life history along elevational gradients: a meta-analysis. Biological
452	Reviews 91(2), 469-482. doi: 10.1111/brv.12180. https://doi.org/10.1111/brv.12180
453	Bozinovic, F., Calosi, P., & Spicer, J.I. (2011). Physiological correlates of geographic range
454	in animals. Annual Review of Ecology, Evolution, and Systematics, 42,155-179.
455	https://doi.org/10.1146/annurev-ecolsys-102710-145055
456	Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: understanding AIC and
457	BIC in model selection. Sociological methods & research, 33(2), 261-304.
458	Burraco, P., Díaz-Paniagua, C., & Gomez-Mestre, I. (2017a). Different effects of accelerated
459	development and enhanced growth on oxidative stress and telomere shortening in
460	amphibian larvae. Scientific Reports, 7(1), 7494. https://doi.org/10.1038/s41598-017-
461	07201-z
462	Burraco, P., Valdés, A. E., Johansson, F., & Gomez-Mestre, I. (2017b). Physiological
463	mechanisms of adaptive developmental plasticity in Rana temporaria island

464	populations. BMC Evolutionary Biology, 17(1), 164. https://doi.org/10.1186/s12862-
465	017-1004-1
466	Carretero, M. A. (2002). Sources of colour pattern variation in Mediterranean Psammodromus
467	algirus. Netherlands Journal of Zoology, 52(1), 43-60.
468	https://doi.org/10.1163/156854202760405177
469	Cawthon, R. M. (2002). Telomere measurement by quantitative PCR. Nucleic Acids
470	Research, 30(10), e47-e47. https/:/doi.org/10.1093/nar/30.10.e47
471	Comas, M., Reguera, S., Zamora–Camacho, F. J., Salvadó, H., & Moreno–Rueda, G. (2016).
472	Comparison of the effectiveness of phalanges vs. humeri and femurs to estimate lizard
473	age with skeletochronology. Animal Biodiversity and Conservation, 39(2), 237-240.
474	https://doi.org/10.32800/abc.2016.39.0237
475	Dupoué, A., Rutschmann, A., Le Galliard, J. F., Clobert, J., Angelier, F., Marciau, C., &
476	Meylan, S. (2017). Shorter telomeres precede population extinction in wild
477	lizards. Scientific Reports, 7(1), 16976. https://doi.org/10.1038/s41598-017-17323-z
478	Eastwood, J. R., Hall, M. L., Teunissen, N., Kingma, S. A., Hidalgo Aranzamendi, N., Fan,
479	M., & Peters, A. (2019). Early-life telomere length predicts lifespan and lifetime
480	reproductive success in a wild bird. Molecular Ecology, 28,1127–1137.
481	https://doi.org/10.1111/mec.15002
482	Giraudeau, M., Angelier, F., & Sepp, T. (2019). Do telomeres influence pace-of-life-strategies
483	in response to environmental conditions over a lifetime and between
484	generations? BioEssays, 41, 1800162. https://doi.org/10.1002/bies.201800162
485	Gomes, N. M., Shay, J. W., & Wright, W. E. (2010). Telomere biology in Metazoa. FEBS
486	Letters, 584(17), 3741-3751. https://doi.org/10.1016/j.febslet.2010.07.031
487	Gunderson, A. R., & Stillman, J. H. (2015). Plasticity in thermal tolerance has limited
488	potential to buffer ectotherms from global warming. Proceedings of the Royal Society
489	B: Biological Sciences, 282(1808), 20150401. https://doi.org/10.1098/rspb.2015.0401
490	Hatakeyama, H., Nakamura, K. I., Izumiyama-Shimomura, N., Ishii, A., Tsuchida, S.,
491	Takubo, K., & Ishikawa, N. (2008). The teleost Oryzias latipes shows telomere
492	shortening with age despite considerable telomerase activity throughout
493	life. Mechanisms of Ageing and Development, 129(9), 550-557.
494	https://doi.org/10.1016/j.mad.2008.05.006
495	Haussmann, M. F., Winkler, D. W., O'Reilly, K. M., Huntington, C. E., Nisbet, I. C., &
496	Vleck, C. M. (2003). Telomeres shorten more slowly in long-lived birds and mammals

497	than in short-lived ones. Proceedings of the Royal Society of London B: Biological
498	Sciences, 270(1522), 1387-1392. https://10.1098/rspb.2003.2385
499	Haussmann, M. F., & Mauck, R. A. (2007). Telomeres and longevity: testing an evolutionary
500	hypothesis. Molecular Biology and Evolution, 25(1), 220-228.
501	https://doi.org/10.1093/molbev/msm244
502	Haussmann, M. F., & Marchetto, N. M. (2010). Telomeres: linking stress and survival,
503	ecology and evolution. Current Zoology, 56(6): 714-727.
504	Heidinger, B. J., Blount, J. D., Boner, W., Griffiths, K., Metcalfe, N. B., & Monaghan, P.
505	(2012). Telomere length in early life predicts lifespan. Proceedings of the National
506	Academy of Sciences, 109(5), 1743-1748. https://doi.org/10.1073/pnas.1113306109
507	Hjernquist, M. B., Söderman, F., Jönsson, K. I., Herczeg, G., Laurila, A., & Merilä, J. (2012).
508	Seasonality determines patterns of growth and age structure over a geographic
509	gradient in an ectothermic vertebrate. Oecologia, 170(3), 641-649.
510	https://doi.org/10.1007/s00442-012-2338-4
511	Hoelzl, F., Cornils, J. S., Smith, S., Moodley, Y., & Ruf, T. (2016). Telomere dynamics in
512	free-living edible dormice (Glis glis): the impact of hibernation and food
513	supply. Journal of Experimental Biology, 219(16), 2469-2474.
514	https://doi.org/10.1242/jeb.14087
515	Horn, T., Robertson, B. C., Will, M., Eason, D. K., Elliott, G. P., & Gemmell, N. J. (2011).
516	Inheritance of telomere length in a bird. PLoS One, 6(2), e17199.
517	https://doi.org/10.1371/journal.pone.0017199
518	Ingles, E. D., & Deakin, J. E. (2016). Telomeres, species differences, and unusual telomeres
519	in vertebrates: presenting challenges and opportunities to understanding telomere
520	dynamics. AIMS Genetics, 3, 1-24. https://10.3934/genet.2016.1.1
521	Iraeta, P., Monasterio, C., Salvador, A., & Diaz, J. A. (2011). Sexual dimorphism and
522	interpopulation differences in lizard hind limb length: locomotor performance or
523	chemical signalling? Biological Journal of the Linnean Society, 104(2), 318-329.
524	https://doi.org/10.1111/j.1095-8312.2011.01739.x
525	Isaksson, C. (2015). Urbanization, oxidative stress and inflammation: a question of evolving,
526	acclimatizing or coping with urban environmental stress. Functional Ecology, 29(7),
527	913-923. https://doi.org/10.1111/1365-2435.12477

528	Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., Camarda, C. G., Schaible, R., Casper, B.
529	B., & Quintana-Ascencio, P. F. (2014). Diversity of ageing across the tree of
530	life. Nature, 505(7482), 169. https://doi.org/10.1038/nature12789
531	Keller, I., Alexander, J. M., Holderegger, R., & Edwards, P. J. (2013). Widespread
532	phenotypic and genetic divergence along altitudinal gradients in animals. Journal of
533	Evolutionary Biology 26, 2527-2543. https://doi.org/10.1111/jeb.12255
534	
535	Kirby, R., Johnson, H. E., Alldredge, M. W., & Pauli, J. N. (2019). The cascading effects of
536	human food on hibernation and cellular aging in free-ranging black bears. Scientific
537	Reports, 9(1), 2197. https://doi.org/10.1038/s41598-019-38937
538	Klapper, W., Heidorn, K., Kühne, K., Parwaresch, R., & Krupp, G. (1998). Telomerase
539	activity in 'immortal' fish. FEBS Letters, 434(3), 409-412.
540	https://doi.org/10.1016/S0014-5793(98)01020-5
541	Körner, C., Paulsen, J., & Spehn, E. M. (2011). A definition of mountains and their
542	bioclimatic belts for global comparisons of biodiversity data. Alpine Botany, 121(2),
543	73-78. https://doi.org/10.1007/s00035-011-0094-4
544	Luceri, C., Bigagli, E., Femia, A. P., Caderni, G., Giovannelli, L., & Lodovici, M. (2018).
545	Aging related changes in circulating reactive oxygen species (ROS) and protein
546	carbonyls are indicative of liver oxidative injury. Toxicology Reports, 5, 141-145.
547	https://doi.org/10.1016/j.toxrep.2017.12.017
548	Marasco, V., Stier, A., Boner, W., Griffiths, K., Heidinger, B., & Monaghan, P. (2017).
549	Environmental conditions can modulate the links among oxidative stress, age, and
550	longevity. Mechanisms of Ageing and Development, 164, 100-107.
551	https://doi.org/10.1016/j.mad.2017.04.012
552	McLennan, D., Armstrong, J. D., Stewart, D. C., Mckelvey, S., Boner, W., Monaghan, P., &
553	Metcalfe, N. B. (2016). Interactions between parental traits, environmental harshness
554	and growth rate in determining telomere length in wild juvenile salmon. Molecular
555	Ecology, 25(21), 5425-5438. https://doi.org/10.1111/mec.13857
556	McLennan, D., Armstrong, J. D., Stewart, D. C., Mckelvey, S., Boner, W., Monaghan, P., &
557	Metcalfe, N. B. (2017). Shorter juvenile telomere length is associated with higher
558	survival to spawning in migratory Atlantic salmon. Functional ecology, 31(11), 2070-
559	2079. https://doi.org/10.1111/1365-2435.12939

560	Monaghan P (2007) Farly growth conditions, phenotypic development and environmental
561	change <i>Philosophical Transactions of the Poyal Society P. Piclosical</i>
562	Solange, 363(1407), 1635, 1645, https://doi.org/10.1009/mth.2007.0011
502	Sciences, 505(1497), 1655-1645. https://doi.org/10.1098/18tb.2007.0011
563	Monaghan, P. (2014). Organismal stress, telomeres and life histories. <i>Journal of Experimental</i>
564	<i>Biology</i> , 217(1), 57-66. https://doi.org/10.1242/jeb.090043
565	Monaghan, P., Eisenberg, D. T., Harrington, L., & Nussey, D. (2018). Understanding
566	diversity in telomere dynamics. Philosophical Transactions of the Royal Society B:
567	Biological Sciences, 373, 20160435. https://doi.org/10.1098/rstb.2016.0435
568	Moreno-Rueda, G., Melero, E., Reguera, S., Zamora-Camacho, F. J., & Comas, M. (2019).
569	Short-term impact of a small wildfire on the lizard Psammodromus algirus (Linnaeus,
570	1758): a before-after-control-impact study. Herpetozoa, 31, 173-182.
571	Nussey, D. H., Baird, D., Barrett, E., Boner, W., Fairlie, J., Gemmell, N., & Turbill, C.
572	(2014). Measuring telomere length and telomere dynamics in evolutionary biology and
573	ecology. Methods in Ecology and Evolution, 5(4), 299-310.
574	https://doi.org/10.1111/2041-210X.12161
575	Olsson, M., Pauliny, A., Wapstra, E., & Blomqvist, D. (2010). Proximate determinants of
576	telomere length in sand lizards (Lacerta agilis). Biology Letters, 6(5), 651-653.
577	https://doi.org/10.1098/rsbl.2010.0126
578	Olsson, M., Pauliny, A., Wapstra, E., Uller, T., Schwartz, T., Miller, E., & Blomqvist, D.
579	(2011): Sexual differences in telomere selection in the wild. Molecular Ecology 20,
580	2085–2099. https://doi.org/10.1111/j.1365-294X.2011.05085.x
581	Olsson, M., Wapstra, E., & Friesen, C. (2018). Ectothermic telomeres: it's time they came in
582	from the cold. Philosophical Transactions of the Royal Society B: Biological
583	Sciences, 373(1741), 20160449. https://doi.org/10.1098/rstb.2016.0449
584	O'sullivan, R. J., & Karlseder, J. (2010). Telomeres: protecting chromosomes against genome
585	instability. Nature Reviews Molecular Cell biology, 11(3), 171-181.
586	https://doi.org/10.1038/nrm2848
587	Perry, G., Wallace, M.C., Perry, D., Curzer, H., Muhlberger, P. (2011): Toe clipping of
588	amphibians and reptiles: Science, ethics, and the law. Journal of Herpetology, 45(4),
589	547-555. https://doi.org/10.2307/41415330
590	Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-
591	PCR. Nucleic Acids Research, 29(9), e45-e45. https://10.1093/nar/29.9.e45

592	Quinn, G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists.
593	Cambridge University Press.
594	Ratikainen, I. I., & Kokko, H. (2019). The coevolution of lifespan and reversible
595	plasticity. Nature Communications, 10(1), 538.
596	https://doi.org/10.5061/dryad.m7b43mm
597	Reichert, S., Stier, A. (2017). Does oxidative stress shorten telomeres in vivo? A review.
598	Biology Letters, 13, 20170463. https://doi.org/10.1098/rsbl.2017.0463
599	Reguera, S., Zamora-Camacho, F. J., Trenzado, C. E., Sanz, A., & Moreno-Rueda, G. (2014).
600	Oxidative stress decreases with elevation in the lizard Psammodromus
601	algirus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative
602	Physiology, 172, 52-56. https://doi.org/10.1016/j.cbpa.2014.02.018
603	Reguera, S., Zamora-Camacho, F. J., Melero, E., García-Mesa, S., Trenzado, C. E., Cabrerizo,
604	M. J., & Moreno-Rueda, G. (2015). Ultraviolet radiation does not increase oxidative
605	stress in the lizard Psammodromus algirus along an elevational gradient. Comparative
606	Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 183, 20-26.
607	https://doi.org/10.1016/j.cbpa.2014.12.015
608	Rollings, N., Uhrig, E. J., Krohmer, R. W., Waye, H. L., Mason, R. T., Olsson, M., &
609	Friesen, C. R. (2017). Age-related sex differences in body condition and telomere
610	dynamics of red-sided garter snakes. Proceedings of the Royal Society B: Biological
611	Sciences, 284(1852), 20162146. https://doi.org/10.1098/rspb.2016.2146
612	Salvador, A. (2015). Lagartija colilarga-Psammodromus algirus. Enciclopedia Virtual de
613	los Vertebrados Espanoles. Madrid: Museo Nacional de Ciencias Naturales, MNCN-
614	CSIC.
615	Schulte-Hostedde, A. I., Zinner, B., Millar, J. S., & Hickling, G. J. (2005). Restitution of
616	mass-size residuals: validating body condition indices. <i>Ecology</i> , 86(1), 155-163.
617	https://doi.org/10.1890/04-0232
618	Selman, C., Blount, J. D., Nussey, D. H., & Speakman, J. R. (2012). Oxidative damage,
619	ageing, and life-history evolution: where now? Trends in Ecology &
620	Evolution, 27(10), 570-577. https://doi.org/10.1016/j.tree.2012.06.006
621	Sih, A., Ferrari, M. C., & Harris, D. J. (2011). Evolution and behavioural responses to
622	human-induced rapid environmental change. Evolutionary Applications, 4(2), 367-
623	387. https://doi.org/10.1111/j.1752-4571.2010.00166.x
624	Speakman, J. R. (2005). Body size, energy metabolism and lifespan. Journal of Experimental
625	Biology, 208(9), 1717-1730. https://doi.org/10.1242/jeb.01556

626	Stier, A., Delestrade, A., Bize, P., Zahn, S., Criscuolo, F., & Massemin, S. (2016).
627	Investigating how telomere dynamics, growth and life history covary along an
628	elevation gradient in two passerine species. Journal of Avian Biology, 47(1), 134-140.
629	https://doi.org/10.1111/jav.00714
630	Tan, T. C., Rahman, R., Jaber-Hijazi, F., Felix, D. A., Chen, C., Louis, E. J., & Aboobaker, A.
631	(2012) Telomere maintenance and telomerase activity are differentially regulated in
632	asexual and sexual worms. Proceedings of the National Academy of Sciences, 109,
633	4209-4214. https://doi.org/10.1073/pnas. 1118885109
634	Ujvari, B., & Madsen, T. (2009). Short telomeres in hatchling snakes: erythrocyte telomere
635	dynamics and longevity in tropical pythons. PloS One, 4(10), e7493.
636	https://doi.org/10.1371/journal.pone.0007493
637	Ujvari, B., Biro, P. A., Charters, J. E., Brown, G., Heasman, K., Beckmann, C., & Madsen, T.
638	(2017). Curvilinear telomere length dynamics in a squamate reptile. Functional
639	Ecology, 31(3), 753-759. https://doi.org/10.1111/1365-2435.12764
640	Vágási, C. I., Vincze, O., Pătra ., L., Osváth, G., Pénzes, J., Haussmann, M. F., & Pap, P.
641	L. (2019). Longevity and life history coevolve with oxidative stress in
642	birds. Functional Ecology, 33:152-161. https://doi.org/10.1111/1365-2435.13228
643	Wilbourn, R. V., Moatt, J. P., Froy, H., Walling, C. A., Nussey, D. H., & Boonekamp, J. J.
644	(2018). The relationship between telomere length and mortality risk in non-model
645	vertebrate systems: a meta-analysis. Philosophical Transactions of the Royal Society
646	B: Biological Sciences, 373(1741), 20160447. https://doi.org/10.1098/rstb.2016.0447
647	Young, A. J. (2018). The role of telomeres in the mechanisms and evolution of life-history
648	trade-offs and ageing. Philosophical Transactions of the Royal Society B: Biological
649	Sciences, 37, 20160452. https://doi.org/10.1098/rstb.2016.0452
650	Zamora-Camacho, F. J., Reguera, S., Moreno-Rueda, G., & Pleguezuelos, J. M. (2013).
651	Patterns of seasonal activity in a Mediterranean lizard along a 2200 m altitudinal
652	gradient. Journal of Thermal Biology, 38(2), 64-69.
653	https://doi.org/10.1016/j.jtherbio.2012.11.002
654	Zamora-Camacho, F. J., Reguera, S., & Moreno-Rueda, G. (2016). Thermoregulation in the
655	lizard Psammodromus algirus along a 2200-m elevational gradient in Sierra Nevada
656	(Spain). International Journal of Biometeorology, 60(5), 687-697. https://doi.org/
657	10.1007/s00484-015-1063-1
658	Zamudio, K. R., Bell, R. C., & Mason, N. A. (2016). Phenotypes in phylogeography: species'
659	traits, environmental variation, and vertebrate diversification. Proceedings of the

660	National Academy of Sciences, 113(29), 8041-8048.
661	https://doi.org/10.1073/pnas.1602237113
662	Zhao, M., Klaassen, C. A., Lisovski, S., & Klaassen, M. (2019). The adequacy of aging
663	techniques in vertebrates for rapid estimation of population mortality rates from age
664	distributions. Ecology and Evolution, 9(3), 1394-1402.
665	https://doi.org/10.1002/ece3.4854
666	Ziaglar D.V. Wilay, C.D. & Valarda, M.C. (2015). Mitachandrial affactors of callular
667	Ziegler, D. V., whey, C. D., & Veralde, M. C. (2013). Infloction draft effectors of central
667	senescence: beyond the free radical theory of aging. Aging Cell, 14(1), 1-7.
668	https://doi.org/10.1111/acel.12287
669	Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid
670	common statistical problems. Methods in Ecology and Evolution, 1(1), 3-14.
671	
672	
673	
674	
675	
676	
677	
678	
679	
(90)	
680	
681	
693	
682	
683	
68/	
004	
685	
686	
000	
687	
688	
689	
690	

691 **Figure legends**

- 692 **Figure 1.** Sampling locations used in this study across an altitudinal mountain gradient (Sierra
- 693 Nevada mountain system, SE Spain). Numbers from one to six correspond with each location,
- 694 i.e. 300, 700, 1200, 1700, 2200, and 2500 m.a.s.l. respectively.

695

- **Figure 2.** Variation in relative telomere length between sexes (A) or in response to autotomy
- (B) in individuals of the Algerian sand lizard (*Psammodromus algirus*). The red point shows
- the mean value at each age and the boxplot the interquartile range. The kernel density plot
- 699 shows the probability density of data at different values.
- 700
- Figure 3. Variation in relative telomere length across lifetime of in individuals of the
- 702 Algerian sand lizard (*Psammodromus algirus*). The red point shows the mean value at each
- age and the boxplot the interquartile range. The kernel density plot shows the probability
- 704 density of data at different values.
- 705
- Figure 4. Regression between body mass and relative telomere length (r = 0.26, P = 0.007).

707 Regression line shows the correlation between both parameters in all individuals of the

708 Algerian sand lizard (*Psammodromus algirus*) sampled in this study, and indicates that

telomeres did not shorten, but elongated with cell replication, as observed in larger (and older)

- 710 individuals. The grey region indicates the 95% confidence intervals.
- 711
- Figure 5. (A) Regression between body condition and relative telomere length (r = 0.20, P =
- 713 0.043). The asterisk indicates a possible outlier (B) Variation in lizards' body condition across
- altitude ($F_{5,98} = 3.03$, P = 0.014) in individuals of the Algerian sand lizard (*Psammodromus*)
- 715 *algirus*). The red point shows the mean value at each elevation and the boxplot the

- 716 interquartile range. The kernel density plot shows the probability density of data at different
- values.
- 718
- 719 **Figure 6.** Variation in relative telomere length across altitude in individuals of the Algerian
- sand lizard (*Psammodromus algirus*). The red point shows the mean value at each age and the
- boxplot the interquartile range. The kernel density plot shows the probability density of data
- at different values.

Table 1. Summary of the studies describing the relationship between telomere length (TL) with age and/or other traits in reptiles. References are
 included in the Supplementary Information S2.

	_	
7	2	5
	_	~

reference	measured traits	relationship between TL and age	relationship between TL and trait(s)	type of study	technique	tissue	common name	species
							European	
Girondot &		n.s. (embryos vs.					freshwater	
Garcia 1998	age	adults)		field	TRF	blood	turtle	Emys orbicularis
Scott et al.							American	Alligator
2006	body size, sex		body length (-), sex (ns)	field	TRF	blood	alligator	mississippiensis
				from the				
				field, lab				
ъ ч ı.				until			western	
Bronikowski				hibernatio	TDE	11 1	terrestrial gart	Thamnophis
2008	age	(-) (1-13 y/0)		n C	IKF	blood	er snake	elegans
II-44 -1				Irom		blood,	1	
Hatase et al.		(0, 2c, 1)		public	DCD	epider	loggernead sea	C
2008	age	n.s. (0-36 y/o)		aquarium	qPCR	mis	turtie	Caretta caretta
		(+) for both sexes						
		hatablings (0.20	longer TL females then in					
Timori P		matchings $(0-20)$	malag hetabling savas (ng)					
Ujvali & Modeon		y/0), the same in	males, natching sexes (ns),					
2000	aga gurrinal	(N-9)	recaptured natchings (iis),	field	ТДЕ	blood	water puthon	Liggie fuegue
<u>2009</u> <u>Vu at al</u>	age, survivar	(1N-0)	recaptured old pytholis (+)	Tielu		blood	Chinage	Alliagtor
2000	DOD SON	(-) 101 boun sexes (3, 10, v/o)		field	тре	blood	alligator	Alligator
Latasa at al	foreging	(J-10 y/0)		neiu		onidar	loggarhaad	sinensis
	behaviour		foreging behaviour (ng)	field	aDCD	epider	turtle	Caratta agretta
2010	longth ago	(1) for families $()$	formalas: longth (ns)	neiu	<u>qrck</u>	11115		
Olsson at al	activity ticks	(+) 101 remains, $(-)$	activity (ng) ticks (ng) toil					
2010	toil	$\frac{1}{8}$ $\frac{1}{2}$	regeneration (ns): malos:	field	TRE	blood	sand lizard	Lacorta agilis
2010	tall	ð y/0)	regeneration (ns); males:	nela	IKF	DIOOD	sand lizard	Lacerta agilis

	regeneration		ticks (ns), badge size (ns), activity (+), length (-), tail regeneration (-)					
Olsson et al. 2011a	heritability, paternal age, offspring survival, malformations	(-) for sires, n.s. for sons (3-7 y/o)	capture probability of sires (+), offpring sex-ratio (+) TL of sons and paternal age at conception (-)	field	TRF	blood	sand lizard	Lacerta agilis
Olsson et al. 2011b	sex		longer TL in females than in males; females: lifespan (+), lifetime reproductive sucess (+), males: lifespan (ns), lifetime reproductive sucess (ns)	field	TRF	blood	sand lizard	Lacerta agilis
Ballen et al. 2012	maternal and offspring TL, body mass, superoxide	n a (hatabliaza us	offspring TL with maternal TL (+), maternal reproductive investment (+), offspring mass (-), offspring superoxide (-)	from the field, hatching in lab	PNA Kit/FITC flow cytometry	blood	painted dragon	Ctenophorus pictus
2012	sex, age, reproduction	adults)	time to first breeding (+)	field	qPCR	blood	sea turtle	Dermochelys coriacea
Giraudeau et al. 2016 Rollings et al. 2017a	colour fading head color, bib presence	•	colour fading (-) competition ability (-), bib	field	qPCR	blood	painted dragon	Ctenophorus pictus Ctenophorus pictus
Dupoué et al. 2017	body size, sex, altitude, extinction risk, Tmin		body size (ns), sex (ns), extinction risk (-), altitude(+), Tmin (+)	field	TRF	blood	common lizard	Zootoca vivipara
Rollings et al. 2017b	age, sex	quadratic for males, n.s. for females (2-6 y/o)	shorter TL in males, body length (ns), growth (ns), body condition (+)	field	qPCR	blood	red-sided garter snake	Thamnophis sirtalis parietalis

Ujvari et al. 2017	age, survival	quadratic (1-8 y/o)	survival (ns)	field	qPCR	blood	frillneck lizard	Chlamydosaurus kingii
Pauliny et al.	paternity		probability of siring					
2018	probability		offpring (+)	field	qPCR	blood	sand lizard	Lacerta agilis
Zhang et al. 2018	temperature		temperature (-)	laboratory	qPCR	heart	desert toad- headed agama	Phrynocephalus przewalskii
Rollings et al. 2019	sex, tissue		TL varies between sexes and among tissues	laboratory	qPCR	several	painted dragon	Ctenophorus pictus
Mclennan et al. 2019	reproductive mode		longer TL in viviparous mothers and offspring than in oviparous				common lizard	Zootoca vivipara
Burraco et al. 2019 (this study)	age, sex, altitude, autotomy, body mass, body condition	(+) for both sexes	longer TL at low and high altitudes, sex (ns), autotomy (ns), body mass (+), body condition (+)	field	qPCR	epider mis	Algerian sand lizard	Psammodromus algirus

Figure 2

