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Abstract 

Antipredator escape behaviour shows great variation with well-established sources of 

variation being the physical environment and the ecological context. However, the relative 

roles of these sources are rarely assessed together. We measured the distance that 

Schreiber’s green lizards, Lacerta schreiberi allowed a simulated predator to approach 

before fleeing (flight initiation distance; FID) to know which are the main determinants of 

escape decisions. The environment had direct effects on the lizards’ escape strategy; FID 

showed strong positive relationship with distance to refuge on grassy, but not on rocky 

substrates. Furthermore, refuge distance and the escape angle had a complex, substrate-

independent, interaction effect: either short refuge distances or large escape angles resulted 

in short FIDs. In contrast, neither season (reproductive vs. nonreproductive), nor sex 

affected FID. We suggest that the escape strategy of this lizard is determined mainly by the 

environmental settings, irrespective of the ecological context or sexual roles. 
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1. Introduction 

 

Predation is one of the most important selection pressures that determines the morphology 

(Endler, 1991) and behaviour of animals (Lima, 1998). This is because avoiding or 

surviving predatory attacks is a key for increasing fitness (Lima & Dill, 1990). However, 

escape behaviour can be costly too, because by moving the prey may attract the predator, 

spend energy and lose resources and opportunities. Consequently, animals are supposed to 

escape when the fitness costs of staying exceed the costs of escaping (Ydenberg & Dill, 

1986; Cooper & Frederick, 2007). For this reason, antipredator behaviour is very flexible 

given the variation in the actual costs-benefits relationships.  

For instance, the effect of habitat structure on escape decisions is very important 

(Martín & López, 1995; Snell et al., 1988; Majláth & Majláthova, 2009). In dense 

vegetation, the flight initiation distance (FID; i.e. the distance between predator and prey 

when prey starts to flee) is generally shorter than in open habitat, because the prey can use 

cryptic behaviour in the former, while it is more conspicuous in the latter (Martín & López, 

1995; Snell et al., 1988; Majláth & Majláthova, 2009; but see Smith, 1997). Another 

relevant environmental factor is the relative positions of the predator, the prey and the 

refuge. How close an animal allows a predator to approach is strongly dependent on the 

distance to the nearest available refuge and the angle between the prey-refuge and prey-

predator routes. Usually, in most environments, the FID and the distance to the nearest 

refuge have a positive relationship (Dill & Houtman, 1989; Cooper, 1997a; Stankovich & 

Blumstein, 2005; but see Cooper & Wilson, 2007). If we take the escape angle into the 

model, the situation becomes more complex. The escape angle can depend on sensory 

performance constraints, acute changes in environmental factors, direct manipulation of 

sensory structures, availability and position of refuge(s) and obstacles, presence of 

conspecifics, etc. (Domenici et al., 2011a,b). If there is a refuge, the safest escape direction 

is directly towards the refuge or following a direction that maximize the distance from the 

predator while minimizing the time needed to reach the refuge (Domenici et al., 2011a,b). 

For example , when a predator approaches, Uta stansburiana lizards run nonrandomly 

directly toward the nearest refuge, but when the refuge is farther than 15 m, the escape 

behaviour of lizards changes to nondirectional running without hiding (Zani et al., 2009). 
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The FID increases with distance and angle to refuge in broad-headed skinks, Eumeces 

laticeps (Cooper, 1997a) and in eastern woodchucks, Marmota monax (Kramer & 

Bonenfant, 1997).  

The above discussed physical environmental factors are basic stanchions of 

antipredator escape behaviour. However, not every individual is expected to optimize its 

escape strategy in the same way, both individual state and ecological context might alter the 

cost-benefit ratio (Cooper & Frederick, 2007). For example, relative conspicuity to 

predators of different individuals may affect the risk of being detected and this should 

affect escape decisions. Some studies showed that visual conspicuousness of coloration 

correlates positively with shyness (Forsman & Appelqvist, 1998; Martín & López, 1999a; 

Cuadrado et al., 2001; Lindström et al., 2007; Cabido et al., 2009; Møller et al., 2011; but 

see Godin & Dugatkin, 1996); and in some lizards, FID vary among species, being 

inversely correlated with the degree of cryptic coloration (Heatwole, 1968; Johnson, 1970), 

or within a species as a function of the degree of conspicuousness in different microhabitats 

(Cooper, 1998a; Cuadrado et al., 2001). Also, in several cases, there are differences 

between the escape tactics of males and females. For example, in lizards with sexually 

dichromatic coloration, males, with more conspicuous colorations, have longer FIDs than 

females in some species (Lailvaux et al., 2003; Martín & López, 1999a) but not in others 

(Smith, 1996, 1997; Cooper & Wilson, 2007; Whiting, 2002). Male green lizards, Lacerta 

viridis, have longer FIDs than females before and after the mating season, but during the 

mating season the difference dissipates (Majláth & Majláthová, 2009). 

In the present study, we examined the relative roles of microhabitat, position of the 

threat and refuge, ecological context, and sex in determining the escape strategy of adult 

Schreiber’s green lizards, Lacerta schreiberi. We considered two parts of the escape 

strategy: a preventive decision (distance to the nearest refuge before a potential attack) and 

an escape decision in an emergency situation (FID). We hypothesized that while the 

physical environment may have strong effects on escape strategy, differences in ecological 

context (i.e. being within or after the breeding season) and the sexual roles should have a 

modifying effect. We predicted that FID would increase with increasing refuge distance 

and escape angle, and that these effects would be less pronounced in exposed (i.e. open 

rocks) than in complex (grassy areas) microhabitats. Further, we expected males being 

http://beheco.oxfordjournals.org/search?author1=Anders+Pape+M%C3%B8ller&sortspec=date&submit=Submit�
http://www.springerlink.com/content/?Author=Igor+Majl%c3%a1th�
http://www.springerlink.com/content/?Author=Viktoria+Majl%c3%a1thov%c3%a1�
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shyer (i.e. having longer FIDs) than females, because they are more conspicuous due to 

their nuptial coloration (Martín & López, 2009), while both males and females should be 

more risk-taking in the reproductive than in the non-reproductive season to avoid losing 

reproductive opportunities. To test the above hypotheses and their predictions, we studied 

the escape behaviour of adult lizards of both sexes in different microhabitats and both 

within and outside of the reproductive season. 

 

2. Matherials and methods 

Data collection 

The study was performed during the summer of 2008 and spring of 2009 at a large pine 

forest area (‘Valle de La Fuenfría’) in the Guadarrama mountains (40o44’ N, 4o02’ W; 

Madrid Province, Spain). The dominant vegetation consists of Pinus sylvestris forest, with 

shrubs such as Juniperus communis and Cytisus scoparius. In this area, Schreiber’s green 

lizards are active from March to September, mate in April–May, and produce a single 

clutch during June (Marco & Pérez-Mellado, 1990). Lizards occupy relatively moist well 

vegetated areas often close to streams (Salvador, 1988; Pérez-Mellado, 1998). In this area 

the most frequent predators of L. schreiberi are common kestrels (Falco tinnunculus), 

common buzzards (Buteo buteo), booted eagles (Hieraaetus pennatus), grass snakes (Natrix 

natrix), cats (Felis catus), dogs (Canis familiaris) and foxes (Vulpes vulpes). 

We observed the escape behaviour of 31 adult females and 12 males in August 2008 

and 36 males and 22 females in May 2009. The spring sample (May) coincided with the 

beginning of the breeding season, so females could only be in an early stadium of gravidity, 

while in summer (August) reproduction had finished and all females had already laid their 

eggs. We searched for lizards between 10.00 and 18.00h. The observations were carried out 

in sunny, warm and unwindy weather. We simulated a potential predator by an approaching 

human (RK) always wearing the same clothes. This is a conventional method in studies of 

lizard escape behaviour, because lizards identify humans as natural predators (e.g. Braña, 

1993; Bulova, 1994; Martín & López, 1995, 1999a, 2000, 2003; Cooper 1997a,b,c, 1998a,b 

Amo et al., 2005).  

The observer walked (approx. 1 m·s-1) until an adult lizard was located. After this, 

the observer simulated a predator attack by approaching the lizard directly at a slow speed 
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(approx. 0.6 m·s-1) until the lizard fled. We recorded the sex of animals (sexual 

dichromatism was easily discerned by sight) and the following escape behaviour variables: 

(i) ‘flight initiation distance’ (FID): distance between the lizard and the simulated predator 

that elicited escaping, (ii) ‘refuge distance’: distance between the lizard and the refuge used 

to hide, (iii) ‘escape angle’: the angle formed by the line between the lizard and the 

predator and the line between the lizard and the first stopping point after escaping. An 

escape angle of 0° indicated the direction of escaping directly away from the predator, 

while 180° was the direction of escaping towards the predator (Martín & López, 1996). We 

also noted the microhabitat in which the lizard was initially (grass vs. open rocks). The 

observations were made in different parts of a large field area, and density of lizards was 

high, so we assumed that the chance of repeated observations of the same individuals was 

low, hence, we considered the data as independent (Bulova, 1994; Martín & López, 1995; 

Cooper, 1997b). 

 

Statistical analyses 

We ran two General Linear Models (GLMs). The first GLM was built with refuge distance 

as the dependent variable, and sex, microhabitat type and season as fixed factors to reveal 

patterns related to general risk-taking. Second, we ran a GLM with FID as the dependent 

variable, sex, microhabitat type and season as fixed factors and refuge distance and escape 

angle as covariates to reveal patterns of escape strategy. The original models included all 

single effects and two-way interactions. We applied backward stepwise model selection 

based on the P < 0.05 criterion. There are several model selection approaches available, but 

this one is generally considered as a conservative choice (Murtaugh, 2009). We first 

removed the nonsignificant interactions in the order of decreasing P value and then did the 

same with the single effects. We never removed single effects that were part of significant 

interactions. All analyses were done by using the SPSS 17.0.1 (SPSS, Chicago, IL, USA) 

statistical software. 
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3. Results 

 

Refuge distance was not significantly related to any of the analysed potential predictors 

(Table 1). However, FID was significantly affected by microhabitat, refuge distance and the 

microhabitat × refuge distance and refuge distance × escape angle interactions, but not by 

sex, season or any of their interactions (Table 2). Backward stepwise selection produced 

similar results to the original model including all effects. FID was strongly positively 

related to refuge distance in the grass microhabitat (R2 = 0.23, p < 0.001; Fig 1a) but not in 

the rocky microhabitat (R2 = 0.06, p = 0.22; Fig. 1b). With respect to the refuge distance × 

escape angle interaction (Fig. 2.), we found that 1) if a lizard was close to the refuge, it 

allowed the predator to approach closer independently of escape angle, 2) if the escape 

angle was small, the lizard increased FID when the refuge distance increased, but 3) if the 

escape angle was large, the lizard allowed the predator to approach closer independently of 

refuge distance.  

 

4. Discussion 

 

Our results were not entirely consistent with our predictions. While our data revealed strong 

and complex environmental influence on lizard escape behaviour (FID), we did not find 

any effect of sex or ecological context. None of the analysed environmental variables 

affected refuge distance. This is, however, interesting because the detectability of lizards 

and predator attack success should be higher on open rocky substrate than in dense 

vegetation and thus we expected different preventive strategies (e.g. different distances to 

potential refuges). In contrast, the environment had several effects on escape decisions in 

an emergency situation (represented by FID). In several lizard species, individuals have 

longer FID in areas with low cover, because they are more conspicuous in that environment 

(Martín & López, 1995; Snell et al., 1988; Majláth & Majláthova, 2009). Depending on the 

microhabitat, L. schreiberi lizards showed two different escape tactics; in grassy substrates 

offering vegetation cover, FID strongly depended on the refuge distance, but not in rocky 

substrates without cover. In a meta-analysis with 17 lizard species, a positive correlation 

between refuge distance and FID was found, and this relationship was stronger when the 
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variability of refuge distance was higher (Cooper, in press). This suggests variation in the 

flexibility of escape strategies: there may be either low flexibility with individuals choosing 

similar refuge distances and, thus, reacting to predators similarly, or high flexibility with 

variable refuge distances and the subsequent refuge-distance-dependent FID. The habitat-

dependent escape strategies in our study might be explained by similar grounds if the 

variability of distances to available refuges was lower in rocky than in grass substrates. 

Alternatively, differences might result from the above-mentioned detectability and predator 

attack success differences in different microhabitats. Also, thermal differences between 

exposed and refuge locations in different microhabitats, and their associated thermal costs, 

may be important (Martín & López, 1999b, 2010). Thus, in sunny exposed rocky 

microhabitats the substrate temperature can be very high whereas refuge temperature inside 

crevices is cold, while in microhabitats covered by vegetation, external and refuge 

temperatures are more balanced, which could result in a more predictable escape behaviour.  

Besides microhabitat type, the relationship between escape angle and refuge 

distance also have a strong effect on FID. We found that if a lizard was very close to its 

refuge, it allowed the predator to approach closer, irrespective of escape angle. Also, if the 

escape angle was large, the lizard allowed the predator to approach closer, irrespective of 

the refuge distance. Only if the escape angle was small, the FID was dependent on refuge 

distance. These results were expected because if the lizards are close to the refuge, they can 

delay escape as they can run to and reach the refuge quickly irrespective of the predator’s 

position. If the escape angle is small, meaning that the refuge is not blocked by the 

predator, lizards should adjust their FID depending on refuge distance (or time needed to 

reach it) (Cooper, 1997a; Stankovich & Blumstein, 2005). However, if the escape angle is 

large, meaning that the predator is blocking the lizard’s way to its refuge, lizards may face a 

conflict and, then, a better option might be to let the predator to approach closer while 

relying on crypsis as long as possible. This is because most individual lizards will finally 

run directly to the known refuge even if the predator is in that direction, which can still be 

safer than escaping to an unkown refuge where lizards may face dangerous encounters with 

another type of predator (e.g. saurophagous snakes) or an agressive conspecific (Amo et al., 

2005). In the case of the lizard Holbrookia propinqua similar results were observed, with 

the predator being situated between the refuge and the lizard (Cooper, 1999a). In contrast, 
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when the refuge is between the predator and prey, the FID increases with distance and 

angle to refuge; as shown both in the skink Eumeces laticeps (Cooper, 1997a) and the 

marmot Marmota monax (Kramer & Bonenfant, 1997).  

In contrary to our expectations, we did not find any effect of gender or breeding 

season on the escape strategy of L. schreiberi. Conspicuous animals often suffer higher 

predation risk (Stuart-Fox et al., 2003; Husak et al., 2006), but this depends on the abilities 

of detection of potential predators too. Most research on predation risk suffered by lizards 

involves raptors as predators (Olsson, 1993; Stuart-Fox et al., 2003), while snakes (Husak 

et al., 2006) and mammals (Whiting, 2002) are less often considered. However, different 

types of predator can use totally different predatory behaviour and it is likely that the 

escape behaviour against them is not comparable. For example, raptors have very good 

tetrachromatic colour vision and they are very sensitive to slow or little movement 

(Honkavaara et al., 2002; Jones et al., 2007; Lind et al., 2013). This may expalin that males 

of the Western green lizard (L. bilineata), a closely related species, suffer higher predation 

by common kestrels, Falco tinnunculus, than females (Constantini et al., 2007). 

Nevertheless, this sex bias could be caused either because males really do not compensate 

for the higher predation risk of having more conspicuous coloration or simply by the higher 

activity of males in the mating season. The latter was suggested by an experiment using 

painted epoxy-lizard models of Sand lizards (Lacerta agilis), which avoid the effect of 

different activity levels, and did not find differences between sexes in predation rate 

(Olsson, 1993). In contrast, mammals have just dichromatic colour vision (Loop et al., 

1987; Neitz et al., 1989; Hunt et al., 2011). Hence, the breeding coloration of male L. 

schreiberi, which include a strong UV component (Martín & López, 2009), may not be so 

conspicuous for mammal predators, and male lizards might not need to compensate against 

a mammalian (i.e. human) predator. 

Furthermore, in a meta-analysis, it was found that in two-thirds of lizard species 

there are no differences between males and females in escape strategy (Cooper, in press) 

and some of these lizard species have sexual dichromatism like in our study species. In 

Platysaurus broadley, there was no difference on predation risk between males and 

females, which could explain the lack of differences between sexes on FID and RD 

(Whiting, 2002). The lack of sexual differences in L. schreiberi might be also explained if 
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the more conspicuous males could escape faster than the more cryptic females, as it occurs 

in many other species (Cullum, 1998; Lailvaux et al., 2005). However, in the agamid lizard 

Phrynocephalus vlangalii, a species without sexual dimorphism, FID do not differ between 

the sexes and is unrelated to individual escape performance capacity, although males flee 

farther than females (Qi et al., 2014). But the reason could be more complex if opposite 

constraints affect escape decisions of L. schreiberi. In the case of females, cryptic 

coloration do not change seasonally, so females can always use the same effective mimicry 

(i.e. short FID) and would not need to change their escape strategy between seasons. In the 

case of males, during the breeding season coloration is more conspicuous, which should 

initially require a shyer behaviour (i.e. long FID), but conflicting reproductive requirements 

(i.e. mate searching, territorial defense, etc) may force males to be more active and risk 

more (i.e. short FID) (Magnhagen, 1991; Cooper, 1997b, 1999b; Cooper & Wilson, 2007). 

After breeding, male coloration change to less conspicuous and there are no reproductive 

constraints, which may allow males to be more confident (i.e. short FID). 

In conclusion, we have found that the escape behaviour of L. schreiberi is based on 

environmental factors, being fine-tuned in one, but not in another microhabitat type. The 

relative positions of the predator, the prey and the refuge had the expected effects on escape 

decisions. However, contrary to our expectations, gender and ecological context did not 

modify escape decisions dictated by the environment. Likely, this statement could change if 

the animals have other constraints, such as nearby presence of food or conspecifics, which 

can result in lost opportunities after escaping (Cooper, 1997b, 1999b, 2000; Cooper & 

Wilson, 2007). Future studies are needed to see whether the conspicuous nuptial coloration 

of male L. schreiberi did not increase their exposure to predation, or whether males just 

accepted the costs of their ornaments due to conflicting reproductive requirements. 

Similarly, understanding the cost-benefit relations in gravid vs. postpartum female escape 

decisions would be an important step forward in revealing how different sources of 

selection shape escape behaviour. 
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Table 1. Results of a General Linear Model for the effects of different environmental factors and 

ecological context on refuge distance of L. schreiberi lizards. Nonsignificant effects are shown as 

seen after a one-by-one back-substitution to the final model. 

 

variable/factor df F p 

microhabitat 1,94 1.887 0.173 

season 1,94 1.405 0.239 

sex 1,94 0.203 0.653 

microhabitat *season 1,94 0.632 0.429 

microhabitat *sex 1,94 0.450 0.833 

season *sex 1,94 0.193 0.662 
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Table 2. Results of a General Linear Model for the effects of different environmental factors and 

ecological context on flight initiation distance (FID) of L. schreiberi lizards. Nonsignificant 

effects are shown as seen after a one-by-one back-substitution to the final model. 

 

variable/factor df F p 

microhabitat 1,85 23.976 <0.0001 

refuge distance 1,85 5.034 0.027 

escape angle 1,85 0.979 0.325 

season 1,85 1.074 0.303 

sex 1,85 0.999 0.320 

microhabitat*refuge distance 1,85 20.278 <0.0001 

microhabitat*escape angle 1,85 0.170 0.681 

microhabitat *season 1,85 0.005 0.946 

microhabitat *sex 1,85 2.299 0.133 

refuge distance *escape angle 1,85 6.810 0.011 

refuge distance *season 1,85 0.134 0.716 

refuge distance *sex 1,85 2.893 0.092 

escape angle *season 1,85 0.001 0.975 

escape angle *sex 1,85 1.571 0.213 

season *sex 1,85 1.489 0.225 

 



Kopena et al. / 18 

Figure 1. The effect of refuge distance on flight initiation distance (FID) of L. schreiberi lizards 

in a) grassy substrates or b) in rocky microhabitat types.  
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Figure 2. The effects of refuge distance, and escape angle on flight initiation distance (FID) of L. 

schreiberi lizards (shown in the z axis with a colour code at 50 cm intervals). The colour code of 

FID was: 1: 0-50cm, 2: 50-100cm, 3: 100-150cm, 4: 150-200cm, 5: 200-250cm, 6: 250-300cm, 

7: 300-350cm, 8: 350-400cm. The equation of the relationship was: FID= 0.744*refuge distance 

+ 0.352*escape angle – 0.006*refuge distance*escape angle. 
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