
Cytogenetic and molecular characterization 

of lacertid lizard species from the  

Iberian Peninsula 

Verónica Rojo Oróns 

Doctoral Thesis 

2015  

Supervisors: Dr Horacio Naveira Fachal, Dr Andrés Martínez Lage 

Department of Cell and Molecular Biology 





D. HORACIO NAVEIRA FACHAL, DOCTOR EN BIOLOGÍA Y CATEDRÁTICO

DE UNIVERSIDAD DEL ÁREA DE GENÉTICA DEL DEPARTAMENTO DE

BIOLOGÍA CELULAR Y MOLECULAR DE LA UNIVERSIDADE DA CORUÑA, Y D.

ANDRÉS MARTÍNEZ LAGE, DOCTOR EN BIOLOGÍA Y PROFESOR TITULAR

DE UNIVERSIDAD EN EL ÁREA DE GENÉTICA DEL DEPARTAMENTO DE

BIOLOGÍA CELULAR Y MOLECULAR DE LA UNIVERSIDADE DA CORUÑA,

INFORMAN 

QUE el trabajo titulado "Cytogenetic and molecular characterization of lacertid lizard 

species from the Iberian Peninsula", presentado por Dña. VERÓNICA ROJO ORÓNS 

para optar al título de Doctora en Biología con Mención Internacional por la Universidade da 

Coruña, ha sido realizado bajo nuestra dirección. Considerándolo finalizado, autorizamos su 

presentación y defensa. 

A CORUÑA, A 22 DE SEPTIEMBRE DE 2015 

Fdo. Dr. Horacio Naveira Fachal Fdo. Dr. Andrés Martínez Lage 

Fdo. Verónica Rojo Oróns 





To my dear Rodri 

To my granny 





Acknowledgements

Firstly, I would like to thank my supervisors, Horacio Naveira and Andrés Martínez, for trusting

me and for the opportunity to work on such an interesting project. Thank you for your patient,

guidance, and for sharing your knowledge and experience with me!

Many thanks to Ana González and Pedro Galán for their significant contributions to this

research. Ana, thanks for your friendship and all your support in scientific and non-scientific

questions.  Pedro,  thank  you  for  collecting  all  the  specimens  for  this  thesis,  and  for  your

invaluable wealth of knowledge about lacertids.

I am very grateful to all the people who generously hosted me during my fruitful internships

abroad:  Ettore  Olmo,  Vincenzo Caputo  Barucchi,  Massimo Giovannotti,  Paola  Nisi  Cerioni,

Andrea Splendiani  and Paolo Ruggeri,  at  the  Universitá  Politecnica delle  Marche (Ancona);

Malcolm Ferguson-Smith, Jorge Pereira, Fumio Kasai and Willem Rens, at the University of

Cambridge. These research internships have been an exciting learning experience, and essential

for the completion of this thesis. My special thanks to Massimo, for his infinite patient to show

me the tips and tricks of cell cultures and FISH. Thank you for your support and valuable advice

over all these years. Thanks also to Adriana Canapa and Marco Barucca for their warm welcome,

and to Çinel, Bruna, Sara and Sabrina, for our good moments in Ancona.

Back to Coruña, thanks to my colleagues at the Evolutionary Biology Group and, especially,

to my wonderful lab partners (past, present, and newcomers): Álex, David, Joaquín, Rosa, my

Panoquita, Elba, Neus, Nuria, Luis, Iván, Inés, Eva...I’ve been really lucky to work with you!

Thank you very much for the many good times we enjoyed (and I’m sure we will still enjoy) in

and outside the lab. Many thanks to Rosa García Díaz and her magic hands, for their brilliant

technical  skills,  and  to  Nani,  Raquel,  and  Miriam,  from  the  University  Research  Support

Services, for their willing assistance on DNA sequencing. I would also like to thank the great

AllGenetics team and, especially, Joaquín, Álex and Antón, for giving me the opportunity to

work and learn from them.

To my friends (you know who you are), for being always there and for helping me forget

about everything when I needed it. And, of course, for your interest in this lizards’ "thing"!

I am forever grateful to my amazing family. To Rosa, Pedro, and Lucas, for their energizing

support throughout this odyssey, and for bringing back happiness into our lives. To Rubén; thank

you for your incredible patient and understanding, and for always making me end the day with a

smile. To Cris, for sharing with me a bit of her talent and making this beautiful cover design.

And, especially, to my parents, for their unconditional love, encouragement and support. This

thesis, and everything I achieved, is thanks to you.



Finally,  I  wish  to  thank  the  thesis  committee  and  the  external  reviewers  who  read  and

commented the draft of this thesis report. 

I was supported by a FPU (Formación de Profesorado Universitario) grant, from the Spanish

Ministry  of  Education,  Culture  and  Sport,  and  by  a  Research  Internship  Grant,  from  the

Universidade da Coruña.



Contents

Abbreviations v

Short abstracts ix

Extended abstract (in Spanish) xiii

Introduction 1

1. Reptilian karyotype evolution 3

1.1 Chromosome numbers and karyotypic structure 3

1.2 Conservation of chromosomal synteny 5

2. The evolution of sex-determining mechanisms in reptiles 7

2.1 The evolution of sex chromosomes 8

2.1.1 Long-term preservation of homomorphic sex chromosomes 10

2.2 Sex chromosomes in reptiles 11

2.3 Multiple origins of reptilian sex chromosomes 16

2.4 Turnover of sex chromosomes vs. the evolutionary trap hypothesis 17

3. Satellite DNA: features and evolution 20

4. The study species 22

4.1 The family Lacertidae 22

4.2 The genus Iberolacerta 23

5. References 27

Aims and objectives 45

Chapter  I:  Karyological  characterization of  the  endemic Iberian rock lizard,

Iberolacerta monticola (Squamata, Lacertidae): insights into sex chromosome

evolution

49

Chapter II: Comparative chromosome painting in lacertid lizards: 

highly conserved karyotypes but independent origins of sex chromosomes?
81

Chapter  III:  Evolutionary  dynamics  of  two  satellite  DNA families  in  Rock

lizards of the genus Iberolacerta (Squamata, Lacertidae): different histories but

common traits

127



Conclusions 173

Annexes 177

Annex I:  Karyological characterization of the endemic Iberian rock lizard,

Iberolacerta  monticola  (Squamata,  Lacertidae):  insights  into  sex

chromosome evolution.

Cytogenetic and Genome Research 2014; 142: 28–39

179

Annex II:  Isolation and  characterization  of  two satellite  DNAs in  some

Iberian rock lizards (Squamata, Lacertidae).

Journal  of  Experimental  Zoology  Part  B  Molecular  and  Developmental

Evolution 2014; 322B: 13–26.

193

Annex III:  Evolutionary dynamics of two satellite DNA families in Rock

lizards of the genus Iberolacerta (Squamata, Lacertidae): different histories

but common traits.

Chromosome Research (in press)

209



Abbreviations 

2n Diploid chromosome number

4xT 4x SSC, 0.05% Tween-20

μL Microlitre

μm Micromolar

ºC Degree Celsius

 Nucleotide diversity

ACSL1 Acyl-CoA synthetase long-chain family member 1 

ADAM12 ADAM Metallopeptidase Domain 12 

Ag-staining Silver-staining

ATP2A2 ATPase, Ca++ transporting, cardiac muscle, slow twitch 2 

ATP5A1 ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1,
cardiac muscle 

BLAST Basic Local Alignment Search Tool 

C19orf47 Chromosome 19 open reading frame 47 

CCD Charge coupled device 

CDH8 Cadherin 8, type 2 

CGH Comparative genomic hybridization

CMA3 Chromomycin A3 

COL5A1 Collagen, type V, alpha 1

Cy3 Cyanine 3 

DAPI 4′,6-Diamidino-2-phenylindole 

DDBJ DNA DataBank of Japan 

DMRT1 Doublesex and mab-3 related transcription factor 1 

DNA Deoxyribonucleic acid 

DNase Deoxyribonuclease 

dNTP Deoxynucleotide triphosphate 

v



DOP-PCR Degenerate oligonucleotide primer–polymerase chain reaction 

dUTP 2'-Deoxyuridine 5'-triphosphate

EEF2 Eukaryotic elongation factor 2 

EMBL European Molecular Biology Laboratory 

ESD Environmental sex determination

FBXW11 F-Box And WD Repeat Domain Containing 11

FCA Factorial correspondence analysis

FISH Fluorescence in situ hybridization

FITC Fluorescein Iso-Thyocianate

g Relative centrifugal force (RCF)

GMPPA GDP-mannose pyrophosphorylase A

GSD Genotypic sex determination

h Hour

HEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid 

iCGH Interspecies comparative genomic hybridization

IgG Immunoglobulin G 

IPO5 Importin 5 

ITS Interstitial telomeric site 

IUPAC International Union of Pure and Applied Chemistry

KCl Potassium chloride 

L Litre

M Molar

mg Milligram

MgCl2 Magnesium Chloride 

min Minute

mL Millilitre

mM Millimolar

vi



mmol Millimol

mya Million years ago 

MYST2 MYST histone acetyltransferase 2 

myr Million years

NaCl Sodium Chloride 

ng Nanogram

NCBI National Center for Biotechnology Information 

NOR Nucleolar organizing region

OAF Out at first homolog 

OCA2 Oculocutaneous Albinism II 

OSGIN1 Oxidative stress induced growth inhibitor 1 

PCR Polymerase chain reaction

PIK3CD Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit delta 

RAD-seq Restriction size-associated DNA sequencing

RNase Ribonuclease 

RNF19B Ring finger protein 19B 

rRNA Ribosomal ribonucleic acid 

s Second

satDNA Satellite DNA

SBNO1 Strawberry notch homolog 1 (Drosophila) 

SH3PXD2A SH3 And PX Domains 2A 

SKIL SKI-Like Proto-Oncogene 

SNP Single nucleotide polymorphism

SOX5 (Sex determining region Y)-box 5 

SS18 Synovial sarcoma translocation, chromosome 18 

SSC Saline sodium citrate

TKT Transketolase 

vii



TOP2A Topoisomerase (DNA) II alpha 

TRIM37 Tripartite motif containing 37 

Tris Tris(hydroxymethyl)aminomethane 

TRITC Tetramethylrhodamine 

TSD Temperature-dependent sex determination

UV Ultraviolet

WAC WW domain containing adaptor with coiled-coil 

WDR43 WD Repeat Domain 43 

WT1 Wilms Tumor 1 

ZNF326 Zinc Finger Protein 326 

viii



SHORT ABSTRACTS 





xi 

Abstract

Reptiles, with their great diversity of sex-determining systems, have long been regarded as a 

model group for studying the evolution of sex determination and sex chromosomes. They also 

hold a key phylogenetic position to elucidate the organization and evolution of amniote 

genomes. This PhD thesis aims to contribute to this understanding by investigating sex 

chromosomes and karyotype evolution in lacertid lizards, with a focus on rock lizard species 

(genus Iberolacerta) endemic of the Iberian Peninsula. Firstly, we applied classical and 

molecular cytogenetic methods to identify and characterize previously unknown ZW sex 

chromosomes in the species I. monticola. Secondly, we developed whole-chromosome paints 

from I. monticola to detect chromosomal rearragements and test the homology of sex 

chromosomes among closely related lacertid species. These results revealed a high degree of 

karyotype conservation, but a rapid and independent differentiation of sex chromosomes, and 

even a putative cryptic event of sex chromosome turnover. Finally, we explored the mode of 

evolution of two satellite DNA families shared by all eight Iberolacerta species. Both satellite 

DNAs showed complex and disparate evolutionary patterns, and a highly dynamic behaviour 

which may be correlated with chromosomal rearragements and karyotype diversification in 

this genus. 

Resumen

Los reptiles, con su extraordinaria diversidad de sistemas de determinación del sexo, 

constituyen uno de los grupos más atractivos para el estudio de la evolución del genoma y los 

cromosomas sexuales en amniotas. Esta tesis pretende ampliar el conocimiento en esta área 

investigando la evolución del cariotipo y de los cromosomas sexuales en lacértidos, y 

principalmente en lagartijas del género Iberolacerta endémicas de la Península Ibérica. En 

primer lugar, se emplearon técnicas de citogenética clásica y molecular para caracterizar el par 

sexual ZW, previamente no identificado, en la especie I. monticola. En segundo lugar, se 

desarrollaron sondas cromosómicas en I. monticola para detectar reordenaciones 

cromosómicas y evaluar la homología de los cromosomas sexuales en otras especies de 

lacértidos. Estos resultados revelaron un alto grado de conservación de los cariotipos, pero 

también procesos independientes de diferenciación de los cromosomas sexuales, e incluso un 

posible evento de sustitución del par sexual. Por último, se analizó el modo de evolución de 
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dos familias de ADN satélite presentes en las ocho especies del género Iberolacerta. Ambas 

familias mostraron patrones evolutivos distintos y complejos, y un elevado dinamismo que 

podría estar asociado a la diversificación del cariotipo en este género. 

Resumo

Os réptiles, coa súa extraordinaria diversidade de sistemas de determinación do sexo, 

constitúen un dos grupos máis atractivos para o estudo da evolución do xenoma e os 

cromosomas sexuais en amniotas. Esta tese pretende ampliar o coñecemento nesta área 

investigando a evolución do cariotipo e dos cromosomas sexuais en lacértidos, e 

principalmente en especies de lagartas do xénero Iberolacerta endémicas da Península Ibérica. 

En primeiro lugar, empregáronse técnicas de citoxenética clásica e molecular para caracterizar 

o par sexual ZW, previamente non identificado, na especie I. monticola. En segundo lugar,

elaboráronse sondas cromosómicas en  I. monticola para detectar reordenacións cromosómicas

e avaliar a homoloxía dos cromosomas sexuais noutras especies de lacértidos. Estes resultados

revelaron un alto grao de conservación dos cariotipos, pero tamén procesos independentes de

diferenciación dos cromosomas sexuais, e mesmo un posible evento de substitución do par

sexual. Finalmente, analizouse o modo de evolución de dúas familias de ADN satélite

presentes nas oito especies do xénero Iberolacerta. Ámbalas dúas familias amosaron patróns

evolutivos distintos e complexos, e un elevado dinamismo que podería estar asociado á

diversificación do cariotipo neste xénero.
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Extended abstract

Los reptiles (Sauropsida) son un clado de vertebrados amniotas que incluye tres grandes linajes:

Lepidosauria,  que  comprende  los  órdenes  Squamata  (lagartos,  serpientes  y  anfisbénidos)  y

Sphenodontia (tuátara); Archosauria, que engloba a cocodrilos y aves; y Testudines (tortugas), el

grupo  hermano  de  los  arcosaurios.  Debido  a  la  posición  clave  que  ocupan  en  la  filogenia

amniota,  la  caracterización  de  los  genomas  de  reptiles  es  fundamental  para  comprender  la

organización y los patrones de evolución del genoma en vertebrados.

Desde el punto de vista cariológico, los reptiles son un grupo muy heterogéneo, con una gran

diversidad  en  el  número  cromosómico,  estructura  del  cariotipo  y  tasa  de  reordenaciones

cromosómicas. El cariotipo típico de reptiles consta de hasta 10 pares de macrocromosomas y un

número variable de microcromosomas, si bien algunos clados (crocodrilos, geckos y lacértidos)

poseen un número  reducido o  incluso carecen de microcromosomas.  En constraste  con esta

diversidad  cariológica,  trabajos  recientes  de  genómica  comparada,  cartografiado  genético  y

pintado cromosómico (chromosome painting) han revelado una extraordinaria conservación de la

sintenía cromosómica en todos los linajes de saurópsidos, a pesar de que su divergencia se inició

hace aproximadamente 275 millones de años.

Los cromosomas sexuales, en cambio, representan una conspicua excepción a este patrón. En

general, los reptiles se caracterizan por poseer una variabilidad excepcional de mecanismos de

determinación  sexual,  que  incluye  tanto  sistemas  de  determinación  dependientes  de  la

temperatura como sistemas de determinación genética con cromosomas sexuales XY (machos

heterogaméticos  XY,  hembras  XX)  y  ZW (hembras  heterogaméticas  ZW,  machos  ZZ).  Esta

variabilidad no muestra una clara segregración filogenética, lo que sugiere que a lo largo de la

historia  evolutiva  de este  grupo ha  habido múltiples  transiciones  entre  distintos  sistemas  de

determinación  sexual.  No  obstante,  los  niveles  de  plasticidad  en  la  determinación  de  sexo

difieren considerablemente entre distintos grupos taxonómicos. Así, el dinamismo observado en

los geckos o los lagartos agámidos contrasta notablemente con la  elevada estabilidad de los

cromosomas sexuales en aves o serpientes.  La distribución filogenética de los mecanismos de

determinación del sexo, con los datos actualmente disponibles, sugiere que algunos otros linajes

podrían tener también sistemas de cromosomas sexuales conservados. Uno de estos linajes serían

los  lacértidos  (familia  Lacertidae),  que  aparentemente  comparten  un sistema ZW único.  Sin

embargo, la dificultad para identificar los cromosomas sexuales en algunas especies mediante

técnicas citogenéticas convencionales, y la falta de estudios que evalúen la homología a nivel
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molecular  entre  distintos  sistemas  de  cromosomas  sexuales,  impiden  reconstruir  de  forma

inequívoca la historia evolutiva de la determinación del sexo tanto dentro como entre distintos

grupos del reptiles.

Esta tesis pretende contribuir a esta reconstrucción realizando un análisis comparativo de los

cromosomas  sexuales  en  lacértidos  y,  principalmente,  en  el  género  Iberolacerta.  Se  ha

examinado también homología cromosómica entre  la  especie  I.  monticola y  otros grupos de

reptiles,  con  el  fin  de  trazar  el  proceso  de  reestructuración  del  cariotipo  que  condujo  a  la

reducción en el número de microcromosomas en la familia Lacertidae. Por último, se investigó la

plasticidad del genoma en las especies de  Iberolacerta analizando la evolución y organización

cromosómica  de  dos  familias  de  ADN satélite,  HindIII  y  TaqI.  Por  su  particular  modo  de

evolución, el ADN satélite representa uno de los componentes más dinámicos de los genomas

eucariotas,  pudiendo  variar  tanto  en  secuencia  como  en  número  de  copias  entre  especies

estrechamente  relacionadas.  Este  elevado  dinamismo  puede  estar  asociado  en  ocasiones  a

reordenaciones cromosómicas, e incluso al aislamiento reproductivo y la especiación. Por ello, el

estudio del ADN satélite puede ayudar a comprender no solo los factores que influyen en la

evolución de este elemento repetitivo, sino también su posible papel en la diversificación del

cariotipo dentro del género Iberolacerta.

El género Iberolacerta (Arribas, 1997) agrupa a todas las lagartijas serranas de la Península

Ibérica y a una especie balcánica (I. horvathi). Atendiendo a las últimas revisiones taxonómicas,

Iberolacerta consta de ocho especies, que pueden ser clasificadas en tres grupos geográficamente

diferenciados: 1) el grupo ibérico, que engloba a todas las poblaciones de la Península Ibérica,

excepto  las  de  los  Pirineos,  e  incluye  las  especies  I.  cyreni,  I.  martinezricai,  I.  galani e  I.

monticola; 2) el grupo pirenaico, considerado como subgénero Pyrenesaura (Arribas, 1998), en

el que se incluyen I. aranica,  I. aurelioi e I. bonnali; y 3) el grupo de Horvath, que agrupa las

poblaciones de los Alpes y los Balcanes, situadas a más de 1000 kilómetros de la Península

Ibérica, todas ellas pertenecientes a una misma especies, I. horvathi.

Los análisis citogenéticos publicados hasta la fecha describen como característica del género

Iberolacerta la falta del típico par de microcromosomas, presente en todos los demás linajes de

lacértidos. Así, el cariotipo de las especies de Iberolacerta cuenta con 2n=36 macrocromosomas

acrocéntricos,  a  excepción  de  las  del  grupo  pirenaico,  que  muestran  frecuentes  fusiones

Robertsonianas que reducen su número de cromosomas hasta 23 o 24 (en hembras y machos,

respectivamente, de I. bonnali). Con respeto al par sexual, la mayoría de las especies posee un

sistema  ZW,  típico  de  la  familia  Lacertidae.  Sin  embargo,  el  grado  de  degeneración  de

cromosoma W parece variar considerablemente entre especies. I. horvathi,  I. cyreni e  I. galani
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poseen un par ZW altamente heteromórfico, con un cromosoma W de menor tamaño que el Z y

casi completamente heterocromático. Por el contrario, los cromosomas sexuales de I. aranica, I.

martinezricai e  I.  monticola  son  aparentemente  homomórficos  e  indistinguibles  en  base  a

diferencias  en  tamaño,  morfología  o  grado  de  heterocromatinización.  De  nuevo,  dos  de  las

especies pirenaicas (I. aurelioi e  I. bonnali) muestran una excepción a este patrón general, al

compartir un sistema múltiple Z1Z2W/Z1Z2Z1Z2, donde el W es submetacéntrico y los homólogos

Z1 y Z2 son acrocéntricos. Las diferencias en el grado de degeneración del cromosoma W se

observan  entre  especies  tan  estrechamente  relacionadas  como  I.  galani,  I.  monticola  e  I.

martinezricai, lo que sugiere que la diferenciación de cromosomas sexuales se ha producido de

forma rápida e independiente en los diferentes taxa. Por ello, el género Iberolacerta constituye

un excelente sistema para examinar en profundidad los procesos involucrados en el origen y

diferenciación de los cromosomas sexuales.

- Con este propósito, en el Capítulo I se realizó un análisis citogenético,—aplicando técnicas

de tinción convencionales y diferenciales, hibridación in situ fluorescente (FISH) e hibridación

genómica  comparada  (CGH),— para  caracterizar  de  forma  detallada  el  cariotipo,  y

potencialmente  detectar  los cromosomas sexuales,  en la  especie  I.  monticola.  Los resultados

confirmaron  el  cariotipo  previamente  descrito  para  esta  especie,  compuesto  por  2n=36

macrocromosomas acrocéntricos de tamaños gradualemte decrecientes. La tinción con plata (Ag-

NOR)  y  la  hibridación  con  una  sonda  de  los  genes  ribosomales  mayores  (18S-5.8S-28S)

localizaron las regiones organizadoras nucleolares (NORs) en la región subtelomérica del par

cromosómico 6. La hibridación con la sonda telomérica de vertebrados (TTAGGG)n produjo

señales claras en ambos telómeros de cada cromosoma, y también señales intersticiales en cinco

pares  cromosómicos.  Estas  señales  intersticiales podrían ser  "cicatrices"  evolutivas;  es  decir,

vestigios de reordenaciones cromosómicas (inversiones y fusiones) que se han producido durante

la evolución del cariotipo. El bandeo C, seguido de la tinción diferencial con DAPI y  CMA3,

mostró  la  presencia  de  bloques  de  heterocromatina  constitutiva  uniformemente  teñidos  por

ambos  fluorocromos  en  los  centrómeros  de  todos  los  cromosomas,  así  como  en  regiones

intersticiales de 10 pares cromosómicos largos. Se detectaron también bandas C tenues, CMA3-

positivas (y, por tanto, ricas en GC), en posición telomérica, en los 12 pares cromosómicos de

mayor tamaño. Este último es un carácter compartido con I. galani, pero no con I. martinezricai.

De hecho, en general, los patrones de bandas C descritos hasta la fecha en Iberolacerta muestran

una  gran  heterogeneidad  en  la  cantidad,  distribución  y  composición  de  la  fracción

heterocromática en los distintos  taxa. Si bien estos patrones pueden ser útiles para identificar
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caracteres diagnóstico de especie, no reflejan necesariamente las afinidades filogenéticas entre

especies.

Finalmente, a diferencia de trabajos anteriores, los resultados del bandeo C y de la CGH

revelaron la existencia de un par sexual ZW, que fue detectado en todas las hembras de las cuatro

poblaciones de I. monticola analizadas. Este par ZW presenta características citológicas similares

a las de los cromosomas sexuales ya descritos en I. horvathi, I. cyreni e I. galani. El cromosoma

W es uno de los más pequeños del cariotipo y completamente heterocromático, con excepción de

una pequeña región de eucromatina intersticial. El cromosoma Z tiene un tamaño similar al de

los pares 9 o 10, y puede ser diferenciado de los autosomas por poseer una banda C telomérica

más  aparente  tras  la  tinción  con  CMA3.  Los  resultados  de  la  CGH  confirmaron  que  los

cromosomas  Z  y  W están  altamente  diferenciados  a  nivel  molecular,  como resultado  de  la

acumulación diferencial de secuencias repetitivas en la región distal del cromosoma W.

- En el Capítulo II se desarrollaron sondas cromosómicas de I. monticola, obtenidas mediante

separación de los cromosomas por citometría de flujo. Una vez determinada la correspondencia

de cada sonda con los cromosomas de I. monticola, aquella que contenía el cromosoma W fue

utilizada  en  experimentos  de  chromosome painting sobre  preparaciones  metafásicas  de  otras

especies de lacértidos, para evaluar la homología entre sus cromosomas sexuales. En particular,

se seleccionaron cuatro especies con diferentes sistemas ZW: I. galani e I. bonnali, ya descritas

anteriormente;  Timon lepidus, con un micro-cromosoma W; y  Lacerta schreiberi,  con un par

sexual  aparentemente  homomórfico  e  indistinguible  citológicamente.  La  sonda  W  de  I.

monticola produjo una clara señal de hibridación en la región eucromática del cromosoma W de

I. galani, y en el brazo largo del cromosoma W submetacéntrico de I. bonnali, demostrando que

los cromosomas sexuales de las tres especies derivan de un mismo par ancestral. Además, fue

posible determinar que el brazo corto del W de I. bonnali es homólogo al cromosoma 15 o 16 de

I. monticola. Este resultado indica que la formación del neo-W de I. bonnali es el resultado de

una fusión céntrica del cromosoma W original con uno de los autosomas de menor tamaño del

cariotipo ancestral. Al contrario, no se detectó ninguna señal de hibridación de la sonda W sobre

los cromosomas sexuales de T. lepidus y L. schreiberi (cuyo par ZW fue descubierto también en

este trabajo). Experimentos recíprocos de CGH entre  I.  monticola,  T. lepidus y  L. schreiberi

confirmaron que los cromosomas W de las tres especies están sumamente diferenciados entre sí,

y  probablemente  evolucionaron  de  forma  independiente  mediante  la  rápida  acumulación  de

secuencias repetitivas características de cada linaje. Para comprobar la homología del par ZW

entre estos tres taxa, se realizaron pruebas adicionales de chromosome painting con la sonda que

contiene el cromosoma Z de I. monticola. Esta sonda identificó el cromosoma Z de T. lepidus,
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pero no el de L. schreiberi que, en cambio, fue detectado con la sonda que incluye los pares 15 y

16  de  I.  monticola.  Si  bien  estos  datos  son  preliminares,  —  puesto  que  en  este  estudio  se

analizaron únicamente hembras de cada especie, — la existencia de un par ZW en L. schreiberi

distinto  al  de  I.  monticola y  T.  lepidus sugiere  que  los  cromosomas  sexuales  en  la  familia

Lacertidae han evolucionado de forma independiente, a partir de distintos autosomas, al menos

en  dos  ocasiones.  La  sustitución  de  los  cromosomas  ZW originales  parece  ser  un  carácter

derivado  en  L.  schreiberi,  y  podría  haber  ocurrido,  por  ejemplo,  tras  la  transposición  o

translocación del gen determinante del sexo a un autosoma, que ahora daría lugar al nuevo par

ZW.

La hibridación de todas las demás sondas cromosómicas de I. monticola sobre metafases de

T. lepidus y  L. schreiberi mostró un alto grado de conservación evolutiva y pocas variaciones

estructurales  entre  los  cariotipos  de  las  tres  especies.  Las  principales  reordenaciones

cromosómicas observadas incluyen: 1) la formación de un par metacéntrico en  T. lepidus, tras

una fusión Robertsoniana de dos elementos acrocéntricos homólogos a los cromosomas 2 y 4 de

I. monticola, y 2) la ausencia del par de microcromosomas en I. monticola (y en todas las demás

Iberolacerta), resultado de su translocación al par cromosómico 11 o 12.

Finalmente, las fracciones cromosómicas de  I.  monticola fueron utilizadas también en un

experimento  de  cartografiado  genético  mediante  PCR,  para  deducir  la  homología  de  estos

cromosomas con los de otras especies de reptiles filogenéticamente más distantes. En concreto,

se hizo uso de la información disponible del genoma de Anolis carolinensis (Iguania, Squamata)

para  seleccionar  al  menos  un  marcador  localizado  en cada  uno  de  los  cromosomas  de  esta

especie. El número cromosómico de A. carolinensis es idéntico al de I. monticola (2n=36) pero

su cariotipo consta de 6 pares de macrocromosomas y 12 pares de microcromosomas y, por

tanto,  difiere  sustancialmente  del  cariotipo  de  los  lacértidos.  Para  el  cartografiado  de  los

marcadores seleccionados, se diseñaron cebadores degenerados a partir de las secuencias de A.

carolinensis y de otros reptiles existentes en las bases de datos. Las parejas de cebadores se

utilizaron en reacciones de PCR sobre cada una de las fracciones cromosómicas de I. monticola.

La  localización  de  un  marcador  en  una  fracción  determinada  se  confirmó  secuenciando  el

producto  amplificado  en  la  PCR.  Pese  a  las  limitaciones  experimentales  que  presentó  esta

estrategia, la comparación de los resultados obtenidos con los mapas citogenéticos publicados

para  otras  especies  de  reptiles  arrojó  algunas  observaciones  interesantes.  Por  ejemplo,  el

cromosoma 1 de I. monticola es al menos parcialmente sinténico con los cromosomas 3, 5 y 7

del gallo (Gallus gallus), un rasgo que parece estar conservado en la mayoría de los linajes de

Squamata. Los resultados de la cartografía cromosómica también apoyan la hipótesis de que los
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cromosomas  sexuales  de  lacértidos  y  A.  carilinensis no  son  homólogos,  y  sugieren  que  la

reducción en el número de microcromosomas en Lacertidae es el resultado de múltiples fusiones

entre los microcromosomas presentes en el cariotipo ancestral de los saurópsidos.

-  En  el  Capítulo  III,  se  estudió  la  dinámica  evolutiva  de  dos  familias  de  ADN satélite

previamente  identificadas  en  Iberolacerta.  La  primera  de  ellas,  HindIII,  forma  parte  de  la

heterocromatina constitutiva centromérica, y parece ser exclusiva de este género. La segunda,

TaqI,  se  localiza  en las  bloques de heterocromatina intersticiales  y  muestra  una distribución

taxonómica más amplia,  habiéndose aislado también en otras especies de lacértidos (géneros

Lacerta, Podarcis y Timon). En este Capítulo, se realizó un análisis detallado de la variabilidad

intraespecífica, la organización genómica y la localización cromosómica de ambas familias en

todas las especies de Iberolacerta, con el objetivo último de dilucidar los patrones de variación y

los factores que determinan su modo de evolución, así como la posible implicación de estos

elementos repetitivos en la evolución del cariotipo.

El  análisis  de  las  secuencias  aisladas  para  cada familia  permitió  identificar  una serie  de

posiciones  nucleotídicas  diagnósticas,  que  definieron  tres  grandes  grupos  de  monómeros  o

subfamilias,  en  el  caso  del  satélite  HindIII,  y  dos  subfamilias,  en  el  satélite  TaqI.  Estas

subfamilias constituyen unidades evolutivas independientes y se distribuyen de forma diferencial

en los distintos taxa, dando lugar a perfiles característicos en cada especie, que no muestran una

clara correspondencia con la filogenia del género. En general, aquellas especies con un perfil de

ADN  satélite  más  diverso  (es  decir,  con  un  mayor  número  de  variantes  HindIII  o  TaqI),

mostraron  bajas  tasas  de  homogeneización  y  de  evolución  concertada  de  las  secuencias,

conservando  en  gran  medida  la  variabilidad  nucleotídica  ancestral.  Al  contrario,  aquellas

especies  con  una  subfamilia  HindIII  o  TaqI  predominante  mostraron  mayores  tasas  de

homogeneización,  y  un  patrón  general  de  evolución  concertada,  que  se  traduce  en  menores

niveles de variabilidad intraespecífica que de divergencia interespecífica. Las diferencias en las

tasas de homogeneización entre especies pueden estar relacionadas con diversos factores que

influyen sobre la actividad de los mecanismos moleculares de intercambio no recíproco, como la

arquitectura  del  cariotipo  (cromosómicas  acrocéntricos  vs.  meta  o  submetacéntricos)  o  la

organización  intercalada  de  distintas  subfamilias  en  un  mismo tándem de  ADN satélite.  En

conclusión, el patrón evolutivo de las familias HindIII y TaqI se ajusta al modelo de la biblioteca

(library hypothesis), según el cual especies relacionadas comparten una colección de variantes

monoméricas o subfamilias de ADN satélite, presentes ya en el genoma de la especie ancestral.

Los perfiles de ADN satélite específicos de especie están definidos en este caso por variaciones

en el número de copias de las distintas subfamilias, debido a su amplificación diferencial a partir
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de  esa  biblioteca  común.  Además,  como  muestran  los  resultados  de  nuestro  análisis,  la

amplificación preferencial  de  una determinada variante  en una especie  puede incrementar  la

eficacia de los mecanismos moleculares de homogeneización, acelerando la tasa de evolución de

las secuencias de ADN satélite en esa especie en concreto. Por otra parte, las fluctuaciones en el

número de copias pueden alterar rápidamente la abundancia de un ADN satélite en el genoma.

Por ejemplo, los resultados de las hibridaciones  in situ con la sonda HindIII muestran que, si

bien este ADN satélite es el componente mayoritario de la heterocromatina centrómerica en  I.

monticola e I. galani, su abundancia se ha reducido de forma drástica en I. horvathi e I. bonnali.

En esta última, y quizás también en las otras especies pirenaicas, la rápida dinámica del ADN

satélite centromérico puede estar correlacionada con la alta tasa de reordenaciones cromosómicas

características de este linaje.

Las principales conclusiones de esta tesis pueden resumirse en los siguientes puntos:

– El análisis  mediante bandeo C e hibridación genómica comparada del  cariotipo de  I.

monticola demostró la existencia de un par sexual ZW heteromórfico, previamente no

identificado. La heterocromatinización del cromosoma W es en gran medida el resultado

de la acumulación masiva de secuencias repetitivas específicas de este cromosoma. Este

resultado sugiere que la presencia de un par ZW es la condición ancestral para el género

Iberolacerta. Cabe esperar, por tanto, que las especies I. martinezricai e I. aranica posean

también  cromosomas  sexuales  diferenciados  que,  como  en  el  caso  de  I.  monticola,

podrían ser detectados tras un análisis citogenético detallado y la aplicación de técnicas

citogenéticas de alta resolución.

– Los experimentos de  chromosome painting con sondas de  I. monticola demostraron la

homología  de los  cromosomas sexuales  en el  género  Iberolacerta y  en la  especie  T.

lepidus, pero no en L. schreiberi. Es posible que, pese al alto grado de conservación de

sus cariotipos, los cromosomas sexuales hayan evolucionado de forma independiente en

distintos  linajes  de  lacértidos.  Asimismo,  los  cromosomas  sexuales  de  I.  monticola

parecen  no  ser  homólogos  con  los  cromosomas  sexuales  de  A.  carolinensis.  Los

resultados  del  cartografiado  cromosómico  sugieren  también  que  la  ausencia  de

microcromosomas  en  lacértidos  es  el  resultado  de  múltiples  fusiones  entre

microcromosomas existentes en el cariotipo ancestral de los reptiles.
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– El análisis de dos familias de ADN satélite en Iberolacerta reveló la compleja dinámica

evolutiva de estos elementos repetitivos, que en general difiere del patrón esperado de

evolución  concertada.  Pese  a  tener  historias  evolutivas  dispares,  los  ADNs  satélite

HindIII y TaqI muestran ciertos rasgos comunes: (i) cada familia está constituida por una

"biblioteca" de variantes monoméricas o subfamilias, presentes ya en el ancestro común

de  Iberolacerta;  (ii)  los  perfiles  de  ADN  satélite  específicos  de  especie  están

prinicpalemente definidos por la amplificación diferencial de determinadas variantes a

partir de la biblioteca común; (iii) la tasa de evolución de las secuencias de ADN satélite

difiere incluso estre especies estrechamente relacionadas, resultando en niveles variables

de homogeneidad intraespecífica y divergencia interespecífica. Las fluctuaciones en el

número  de  copias  de  las  distintas  variantes  monoméricas  pueden  provocar  la

amplificación preferencial de una determinada variante en una especie, o una reducción

drástica en la abundancia global del ADN satélite en el genoma de otras especies. Como

resultado  de  este  complejo  modo  de  evolución,  los  satélites  HindIII  y  TaqI  no  son

marcadores filogenéticos informativos para el género Iberolacerta.
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Introduction

1. Reptilian karyotype evolution

1.1 Chromosome numbers and karyotypic structure 

Extant amniotes are represented by two major lineages: Synapsida (mammals) and Sauropsida 

(reptiles) which diverged from a common ancestor around 320 million years ago (mya) 

(Shedlock and Edwarsd 2009). Sauropsida, with approximately 18,000 extant species, 

comprises three main clades which separated ~275 mya (Shedlock and Edwards 2009): 

Lepidosauria, containing squamates (amphisbaenians, lizards and snakes) and the tuatara; 

Archosauria, including crocodiles and birds; and turtles, the sister group of archosaurs (Chiari 

et al. 2012; Crawford et al. 2012) (Fig. 1). Because of their pivotal phylogenetic position, 

characterization of reptilian genomes is fundamental for understanding the structural changes 

and patterns of genome evolution in amniotes.  

Reptiles are a karyologically heterogeneous group exhibiting high diversity in chromosome 

numbers, morphologies and rates of chromosome changes (Olmo 2008). Karyotypes of birds 

and most non-avian reptiles (referred to as reptiles hereafter) consist of up to ten pairs of 

macrochromosomes and a varying number of microchromosomes (reviewed in Deakin and 

Ezaz 2014). Birds have a particularly large number of microchromosomes, which are 

relatively gene-rich compared to macrochromosomes (Burt 2002). In contrast to mammals, 

birds exhibit a slow rate of change in chromosome number and interchromosomal 

rearragements (Griffin et al. 2007; Ellegren 2010), most species having diploid chromosome 

numbers of 2n=76-84 (Rodionov 1997) consisting of 14-16 macrochromosomes and 60-64 

microchromosomes (Fig. 1). 

Among reptiles, crocodilians and turtles have the most conserved karyotypes (Cohen and 

Gans 1970; Olmo and Signorino 2005; Olmo 2008). Most turtles have bimodal complements, 

i.e., constituted of macrochomosomes and microchromosomes, and show low variability in

chromosome morphology and G-banding patterns (Olmo 2008 and references therein).

Chromosome numbers range from 2n=22 to 2n=66, but the most common diploid number is

2n=52, comprising 28 macrochromosomes and 24 microchromosomes (Graves and Shetty

2000) (Fig. 1). Variations in the diploid number often involve changes in the number of

microchromosomes (Valenzuela and Adams 2011). The karyotypes of crocodiles are

characterized by the lack of microchromosomes and reduced diploid numbers (2n=30-42)
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derived from a single basic model with 2n=32 (Graves and Shetty 2000). As in turtles, G-

banding patterns of macrochomosomes are highly conservative in this order (Olmo 2008). 

Figure 1. Amniote phylogeny showing haploid karyotypes for representative species 

(figure modified from Deakin and Ezaz 2014). The range of diplod chromosomes numbers 

for each lineage are indicated on the branches Microchromosomes are indicated in dark 

grey. The sex chromosomes present in the homogametic sex are shown for 

representative species and alternatives present in each lineage are indicated. TSD: 

temperature sex determination. 1: Mammalia; 2: Sauropsida; 3: Archosauria; 4: 

Lepidosauria; 5: Squamta. Data are from: Shetty and Graves (2000); Olmo and Signorino 

(2005); Valenzuela and Adams (2011); Deakin and Ezaz (2014). Amniote phylogeny and 

divergence time estimates follow Shedlock and Edwards (2009). 
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In contrast, squamate reptiles have a high level of karyotypic variability, both in 

chromosome numbers (2n=24-50) and morphologies, and a higher rate of change in 

chromosomes clearly related to the number of living species. Karyotypes with few or no 

microchromosomes are found in the lacertid lizards and in geckos, whereas karyotypes 

containing many microchromosomes are found in the remaining group of squamate reptiles 

(Deakin and Ezaz 2014) (Fig. 1). Snakes have relatively conserved chromosome numbers, 

which typically include eight pairs of macrochromosomes and ten pairs of microchromosomes 

(2n=36). However, karyotypes have undergone frequent rearrangements including fission, 

fusion and repeat accumulation (Mengden and Stock 1980; O’Meally et al. 2010). Larger 

variation in chromosome number is found in amphisbaenians (2n= 26-50) and lizards (2n=16-

64) (Olmo and Signorino 2005), although a common karyotype consists of 2n=36, including

12 macrochromosomes and 24 microchromosomes. Especially in lizards—the group with the

highest karyotypic variability among reptiles—chromosomal variation seems to have played

an important role in the evolution of several taxa (Olmo 2008).

1.2 Conservation of chromosomal synteny 

The availability of amniote genome assemblies (http://www.ncbi.nih.gov/genome/browse/), 

allows comparisons of the organization and function of amniote genomes across vast 

evolutionary distances. These comparisons have provided significant insight into the 

mechanisms of early genome evolution and subsequent lineage-specific evolution in all 

amniotes. For instance, a comparative analysis between the chicken (Gallus gallus) and the 

green anole lizard (Anolis carolinensis, Iguania)—the first reptilian genome sequenced 

(Alföldi et al. 2011)—revealed relatively high conservation of chromosomal synteny and few 

chromosomal rearrangements in the 280 million years since anole and chicken diverged. 

Indeed, 19 out of 22 anchored chicken chromosomes are each syntenic to a single A. 

carolinensis chromosome over their entire length, and all sequence anchored to 

microchromomes in A. carolinensis also aligns to microchromosomes in the chicken (Alföldi 

et al. 2011).  

Althoug whole genomes are available or in progress for an increasing list of reptilian 

species [(the green anole lizards, Anolis carolinensis; the Chinese softshell turtle Pelodiscus 

sinensis; the green sea turtle Chelonia mydas; the western painted turtle Chrysemys picta; the 

Burmese python Python molurus; the king cobra Ophiophagus hannah; the Chinese alligator 
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Alligator sinensis; the American alligator Alligator mississippiensis, the gharial Gavialis 

gangeticus; the saltwater crocodile Crocodylus porosus, the Burmese python Python molurus, 

the King cobra Ophiophagus hannah, the speckled rattlesnake Crotalus mitchellii, and the 

corn snake Pantherophis guttatus (Tzika et al. 2015 and references therein)], none of these 

genomes, except that of the green anole, have been anchored to chromosomes.  

So, to date, most information about genome evolution and chromosomal reorganization in 

reptiles comes from molecular cytogenetic analyses. Even if limited, these data are disclosing 

an unprecedented level of conservation of sauropsid genomes, which is in sharp contrast with 

the extraordinary high rates of interchromosomal rearrangements in mammals (Ferguson-

Smith and Trifonov 2007). Recent comparative gene mapping of several reptile species 

(Pelodiscus sinensis, Testudines; Crocodylus siamensis, Crocodilia; Lacerta agilis, Elaphe 

quadrivirgata, Varanus salvator macromaculatus, Leiolepis reevesii rubritaeniata, Pogona 

vitticeps, and Anolis carolinensis, Squamata) with the chicken revealed extensive linkage 

homology between avian and reptilian chromosomes, despite the substantial diversification of 

reptilian karyotypes (Matsuda et al. 2005; Matsubara et al. 2006, 2012; Srikulnath et al. 2009, 

2013, 2014; Alföldi et al. 2011; Uno et al. 2012; Young et al. 2013). From these results, it has 

been hypothesized that the ancestral amniote karyotype had at least 10 large linkage groups 

and many microchromosomes, which correspond to the chicken macro- and 

microchromosomes, respectively (Uno et al. 2012). Therefore, the karyotypes of lacertid 

lizards and geckos, with few or no microchromosomes, probably have resulted from repeated 

fusions of microchromosomes, which may have occurred independently in each lineage 

(Srikulnath et al. 2014). 

Cross-species chromosome painting is also a powerful tool for genome-wide comparison of 

the chromosome constitution of different species. Yet, only a limited number of studies based 

on chromosome painting have been performed on reptiles. Among them, painting with chicken 

probes revealed a strong conservation of the chromosomes syntenic with the avian Z sex 

chromosome, as well as a conserved association of the avian ancestral chromosomes 3, 5 and 

7, across most major squamate lineages (Pokorná et al. 2011, 2012). At a finer scale, 

chromosome painting demonstrated highly conserved karyotypes, but also species-specific 

rearragements, in skinks (Scincidae) (Giovannotti et al. 2009), and in Gekkotan lizards 

(Trifonov et al. 2011; Johnson Pokorná et al. 2015). Comparative analyses from additional 

reptile groups would be necessary to produce a robust reconstruction of ancestral karyotypes 

and to detect cytogenetic synapomorphies of particular lineages. 
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2. The evolution of sex-determining mechanisms in reptiles

Sex determination is the regulatory process that directs differentiation of the gonads in the 

early embryo to form either testes or ovaries. A variety of mechanisms of sex determination 

exist in vertebrates, and these can be divided in two basic systems: genotypic sex 

determination (GSD), in which the sex of an individual is determined by sex chromosomes, 

i.e., by sex-specific differences in genotype; and environmental sex determination (ESD),

where sex chromosomes are absent and sex is determined by nongenic factors experienced

within a discrete period after conception (Bull 1983; Valenzuela et al. 2003). In vertebrates,

the most common form of ESD is temperature-dependent sex determination (TSD), in which

the incubation temperature experienced during embryonic development is the critical

environmental factor that determinines sex (Bull 1983; Janzen and Paukstis 1991).

Within amniotes, GSD is universal in mammals and birds (Bull 1983). Most therian 

mammals have male heterogamety, i.e., sex is determined by an XX female:XY male sex 

chromosome system in which the Y chromosome harbors the male-dominant testis-

determining gene SRY (Sinclair et al. 1990; Koopman et al. 1991). Birds also have a stable 

chromosome system, but in this case female is the heterogametic sex (ZZ male:ZW female), 

and male development is determined by the double dosage of a Z-borne gene, DMRT1 (Smith 

et al. 2009). In contrast with this stability, reptiles exhibit an extraordinary array of sex-

determining modes, comparable to the variety observed in fish and frogs (for a review see 

Graves 2008). All crocodilians, the tuatara, most turtles and some lizards have TSD systems 

(e.g., Janzen and Krenz 2004; Valenzuela and Lance 2004). Among those groups with GSD, 

all snakes have female heterogamety (ZW, ZZW or ZWW) (Becak and Beçak 1969; Solari 

1993), whereas both XY- and ZW-type sex chromosomes have been reported in lizards and 

turtles (King 1977; Solari 1993; Olmo and Signorino 2005). Although reptilian orthologs of 

mammalian sex-determining genes have been identified (reviewed in Rhen and Schroeder 

2010), the master sex-determining gene and the specific molecular mechanism (dominance or 

dosage) of sex determination in reptiles remain unknown.  

GSD and TSD have been traditionally considered as two alternative states, two 

dichotomous sex-determining systems that differ basicaly in the presence or absence of sex-

specific genotypes (e.g., Bull 1983; Pokorná and Kratochvíl 2009). However, the finding that 

certain reptiles with GSD also respond to temperature (Shine et al. 2002; Valenzuela and 

Lance 2004; Quinn et al. 2007; Radder et al. 2008) have led to propose that there is no sharp 



Verónica Rojo Orons 

8 

boundary between the two main modes of sex determination, and they may be rather viewed 

as two ends of a continuum of sex-determining mechanisms (Shine et al. 2002; Sarre et al. 

2004). This continuum may be explained by the existence of a genotypic system sensitive to 

temperature, where sex is determined by gene-environmental interactions (Valenzuela et al. 

2003). For instance, the dragon lizard, Pogona vitticeps, has a cryptic ZW genetic mode of sex 

determination (Ezaz et al. 2005) that is overridden by temperature at higher extremes (Quinn 

et al. 2007). Since there have been few attempts to examine the occurrence of gene-

environment interactions in sex determination of reptiles, it is possible that cases such as that 

of P. vitticeps represent a much wider phenomenon, which might be connected with the 

evolutionary lability of sex-determining systems in this group (Sarre et al. 2011). 

2.1 The evolution of sex chromosomes 

Sex chromosomes and their evolution have attracted researchers' attention since their 

discovery in the late 1800s (Henking 1981; Stevens 1905; Wilson 1905). Sex chromosomes 

have evolved independently many times in animals and plants (Ohno 1967; Bull 1983; Graves 

and Peichel 2010); nevertheless, they are shaped by similar selective forces and share many 

common features. In mammals and most birds, the the two types of sex chromosome 

homologs (X and Y, or Z and W) are often morphologically distinguishable (heteromorphic), 

with the Y or W being largely heterochromatic, filled with repetitive DNA, and containing 

only a limited number of genes (Bull 1983). Existing theories of the early stages of sex 

chromosome evolution show how sex chromosomes first become non-recombining, and how 

this can lead to genetic degeneration of the heterogametic sex chromosome (Y or W) 

(reviewed in Charlesworth et al. 2005). 

It is widely accepted that sex chromosomes evolved from an autosomal pair when one of 

the homologs acquired a sex-determining gene (Muller 1914; Ohno 1967; Charlesworth 1991). 

This can occur, for example, by mutation, duplication or translocation of a gene—either 

involved in the gonad differentiating pathway or not—which takes over the primary sex-

determining function, converting the autosome into a nascent sex chromosome. For instance, 

the Y-linked DMY (dmrt1bY) in the medaka fish Oryzias latipes (Matsuda et al. 2002; Nanda 

et al. 2002), and the W-linked DM-W in the African clawed frog (Xenopus laevis) (Yoshimoto 

et al. 2008) evolved through duplication and neofunctionalization of DMRT1, a conserved 

regulator of gonadogenesis in all vertebrates studied and necessary for male sex determination 
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in the chicken (Smith et al. 2009). After acquisition of a sex-determining gene, sexually 

antagonistic selection (i.e., opposing selection pressures on the two sexes) leads to the 

accumulation of alleles beneficial for one sex but detrimental to the other in the vicinity of the 

sex-determining locus (Rice 1987). Once such genes have accumulated, there is a selective 

advantage to suppressing recombination between them and the sex-determining regions of the 

proto-sex chromosome. A gradual reduction of crossover frequencies, due to the spread of 

genetic modifiers of recombination rates, or chromosome rearrangements such as inversions 

(which can also cause heteromorphism of the sex chromosome pair), may favor cessation of 

recombination between the evolving sex chromosomes (Charlesworth et al. 2005; Bergero and 

Charlesworth 2009). Further accumulation of sexually-antagonistic genes, or genes simply 

adavantageous to the heterogametic sex, followed by further suppression of recombination, 

progressively extends the non-recombining region of the Y or W chromosome, and the 

adaptation of these chromosome to a sex-specific function. The fraction of the Y or W 

chromosome outside this region that continue to recombine with the X or Z homolog, is a 

pseudoautosomal region. Suppression of recombination can evolve in multiple steps along the 

proto-sex chromosomes, leaving evolutionary strata, i.e., regions along the sex chromosomes 

that lost recombination at distinct time points, as has happened in mammals (Lahn and Page 

1999), birds (Handley et al. 2004), snakes (Vicoso et al. 2013a) or plants (Nicolas et al. 2004; 

Wang et al. 2012). 

Cessation of recombination between large parts or all of the sex chromosomes is the 

ultimate cause of the degeneration of Y or W chromosomes. Lack of recombination among 

genes carried on Y or W chromosomes reduces the ability of selection to fix favorable 

mutations and to prevent the fixation of deleterious ones—due to Hill-Robertson interference 

processes such as Muller's ratchet, background selection and the hitch-hiking of deleterious 

alleles by favorable mutations—which eventually leads to pseudogenization and gene loss 

(reviewed in Charlesworth and Charlesworth 2000). Moreover, repetitive sequences (e.g. 

microsatellites, satellite DNA, rDNA sequences) and transposable elements are predicted to 

accumulate rapidly—even before genes start to degenerate— in the Y or W chromosomes after 

recombination stops (Charlesworth et al. 1994; Steinemann and Steinemann 2005), enabling 

the formation of heterochromatin (Zhou et al. 2013). This may be not only a result of 

suppression of recombination, but also its cause, further promoting the degeneration of the 

heterogametic sex chromosome. The loss of genetic material and the accumulation of repetitve 

sequences and heterochromatin on the Y or W chromosomes often leads to dramatic 
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differences in size and appearance between the two homologs, which can be obvious as 

cytological heteromorphism. This process of repeat accumulation is rapid and stochastic, and 

may generate varying degrees of sex chromosome differentiation (from homomorphy to 

extreme differentiation), as often observed between the sex chromosomes of closely related 

species (White 1973). 

The genetic erosion of the heterogametic sex chromosomes results in an unequal number of 

functional copies of many genes between the sexes. The need to equalize the dosage of the 

expression of genes between the sexes and between the sex chromosomes and the autosomes 

can drive selection for long-term retention of homologous X-Y gene pairs in non-recombining 

regions of the sex chromosomes (e.g., Bellott et al. 2014), or to the evolution of dosage 

compensation, a regulatory mechanism that balances gene expression of sex-linked and 

autosomal genes in the heterogametic sex (Ohno 1967). Several, but not all, species with 

differentiated XY systems have evolved different strategies for global or complete sex 

chromosome compensation (see Mank 2013). On the other hand, all species investigated to 

date with ZW systems [including birds (Ellegren et al. 2007; Itoh et al. 2007), lepidopterans 

(Harrison et al. 2012) and snakes (Vicoso et al. 2013a)] lack a chromosome-wide dosage 

compensation mechanim and, instead, only some dosage-sensitive genes in the Z chromosome 

appear to be upreguated in females in a gene-specific manner (Mank et al. 2011). 

2.1.1 Long-term preservation of homomorphic sex chromosomes 

Most of our knowledge on the evolution of sex chromosomes comes from a few well-studied 

model organisms, especially mammals and Drosophila melanogaster, with evolutionary old 

and highly differentiated XY chromosomes (Bachtrog et al. 2014). However, some other 

groups, such as certain lineages of birds or snakes, possess homomorphic sex chromosomes 

(i.e., undifferentiated at the cytological level) that appear to have been maintained over 

relatively long periods of evolutionary time (e.g., Matsubara et al. 2006; Mank and Ellegren 

2007; Vicoso et al. 2013a, b). For example, avian ZW sex chromosomes—which formed about 

120 mya, and are thus similar in age to the mammalian sex chromosomes (about 165 mya)—

are homomorphic in ratites (ostriches and their kin), but highly differentiated in neognathous 

birds (including the chicken) (see Vicoso et al. 2013b and references therein). Similarly, the 

old ZW sex chromosome pair of snakes is homomorphic in boids and phytons, moderately 

differentiated in colubrids and completely heteromorphic in elapids and vipers (see Vicoso et 
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al. 2013a). Homomorphic sex chromosomes in these clades resemble the ancestral autosomes 

and contain fewer repetitive sequences and more functional genes than their heteromorphic 

orthologs in related species (Matsubara et al. 2006; O’Meally et al. 2010). 

These observations suggest that suppressed recombination can remain limited over long 

evolutionary times, and that degeneration is not necessarily the ultimate fate of sex 

chromosomes. Several hypothesis have been put forward to explain the variable rates of 

degeneration of the heterogametic sex chromosome (for review, see Bachtrog et al. 2014). For 

instance, the differentiation of sex chromosomes might be constrained by the absence of a 

dosage compensation mechanism, as recently proposed for ostriches (Adolfsson and Ellegren 

2013). It is also possible that the rate of sex chromosome degeneration is be directly 

influenced by the strength of sexually-antagonistic selection. Under this premise, species with 

few genes under sexually antagonistic selection on their nascent sex chromosomes could 

evade the selective pressure for reduced recombination, which would slow down the progress 

of sex chromosome differentiation. Alternatively, sexually-antagonistic selection may be 

resolved by mechanisms other than suppressed recombination. In particular, the evolution of 

sex-specific gene expression could eliminate the deleterious effects of sexually-antagonistic 

alleles in the sex to which they are harmful, as recently suggested for the emu (Vicoso et al. 

2013b) 

2.2 Sex chromosomes in reptiles 

Reptiles with GSD possess remarkable variability in sex chromosomes systems. These include 

simple male and female heterogamety, but also multiple sex chromosome systems, such as 

X1X1X2X2 females:X1X2Y males, Z1Z2Z2 males:Z1Z2W females and ZZ males:ZW1W2 

females (Olmo et al. 1986; Solari 1993; Olmo and Signorino 2005). Chromosomal sex 

determination is present in birds, snakes, most lizards and a few turtles. However, this 

variability of sex chromosomes is not equally distributed across the major reptilian lineages 

(see Fig. 2, page 15). 

Female heterogamety is present in all bird species so far analyzed (Ezaz et al. 2006a). The 

bird Z is extremely conserved: it represents either the fourth or fifth largest chromosome pair 

(Suzuki et al. 1930; Ohno et al. 1964; Solari et al. 1993), and homology and gene content is 

conserved even between the most distantly-related species (e.g., Shetty et al. 1999; Nanda et 

al. 2008). The W chromosome, on the contrary, varies from virtualy homomorphic to highly 
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heteromorphic in different bird lineages (see section 2.2.1). In each lineage, the W 

chromosome shows homology to the Z, but is degraded to different extents (reviewed in Mank 

and Ellegren 2007; Stiglec et al. 2007). Snakes also have a conserved ZW system. 

Chromosome 4 is the Z chromosome in all snakes studied to date (Beçak et al. 1964; Ohno 

1967; Solari 1993), and its gene content is conserved between distantly related species 

(Matsubara et al. 2006; Vicoso et al. 2013a). As mentioned before (section 2.2.1), snakes, like 

birds, exhibit substantial variation in the degree of W chromosome degeneration among taxa 

(Ohno 1967; Beçak and Beçak 1969; Matsubara et al. 2006; O’Meally et al. 2010). However, 

whole-genome analysis of a colubrid snake has shown that a low degree of sex chromosome 

heteromorphism—as inferred cytologically—may conceal the true extent of divergence 

between the Z and the W at the DNA sequence level (Vicoso et al. 2013a). 

On the other hand, turtles and lizards exhibit considerable variation in their sex 

chromosomes, with both XY and ZW sex chromosomes systems (Fig. 2). Differentiated sex 

chromosomes have been identified for only nine out of the approximately 18 turtle species 

known to possess GSD, with male heterogamety in six species and female reported for three 

species (see Kawagoshi et al. 2014 and references therein). Most of these species have large or 

middle-sized sex macrochromosomes, but recent research revealed the occurence of both XY 

and ZW sex microchromosomes in at least three species (Ezaz et al. 2006b; Kawai et al. 2007; 

Badenhorst et al. 2013). Phylogenetic reconstruction indicates that TSD is the ancestral state in 

turtles, while GSD arose multiple times independently (Janzen and Krenz 2004). The 

haphazard distribution of sex determining systems, and the coexistence of TSD, XY and ZW 

systems within a single family (e.g., Geomydidae) are consistent with multiple origins of 

GSD, particularly in the suborder Cryptodira (Fig. 2).  

In lizards, sex chromosomes have been identified in 181 of 953 karyotyped species, with 

115 species showing male heterogamety and 66 species showing female heterogamety (Ezaz et 

al. 2009a). Male heterogamety is present in seven families (Iguanidae, Scincidae, 

Sphaerodactylidae, Pygopodidae, Dibamidae, Teiidae and Gymnophathalmidae), while female 

heterogamety has been found in six other families (Bipedidae, Lacertidae, Varanidae, 

Chameleonidae, Agamidae and Phyllodactylidae) (Fig. 2). Both sex chromosomes systems, as 

well as TSD, are found in the family Gekkonidae (Gamble 2010). Multiple sex chromosomes 

(XXY) are common in male heterogamety systems, especially in the family Iguanidae, but not 

in female heterogamety species (see Ezaz et al. 2009a). Morphology and the degree of sex 

chromosome degeneration varies widely among taxa, ranging from homomorphic to fully 
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differentiated (Ezaz et al. 2009a). Sex chromosomes may also involve microchromosomes, 

such as the XY system in Anolis carolinensis (Iguanidae) or the ZW systems of Australian 

agamids (Agamidae) (Ezaz et al. 2005, 2009b; Alföldi et al. 2011). Variation in the sex 

chromosome pair is often observed among closely related species, or even populations of the 

same species (Ezaz et al. 2009a). For instance, the morphology of Z and W chromosomes 

differs within and among populations of Gehyra purpurascens (Gekkonidae) (Moritz 1984). 

Intra-specific variability may also involve the coexistence of simple and multiple sex 

chromosome systems, as in Sceloporus clarkii (XY/XXY; Leaché and Sites 2009) or in 

Zootoca vivipara (ZW/ZZW; Odierna et al. 2001). Despite this overall varibility in sex 

chromosome constitutions, the levels of sex chromosomes diversification vary considerably 

between different lizard groups. Sex determination appears to be particularly dynamic in 

geckos, despite the low number of species for which the sex-determining system is confidently 

known (Gamble et al. 2015). A good example is found in the genus Hemidactylus 

(Gekkonidae), where the closely related species H. turcicus and H. mabouia have male 

heterogamety whereas H. frenatus has female heterogamety (Gamble et al. 2015). Yet, other 

lineages, such as lacertids (only female heterogamety) may possess conserved sex 

chromosomes (Pokorná and Kratochvíl 2009). 

The diversity of sex-determining systems makes reptiles a particularly interesting group to 

study sex determination and test long-standing hypothesis about the evolution of sex 

chromosomes (Bull 1983; Sarre et al. 2004; Janzen and Phillips 2006; Organ and Janes 2008; 

Bachtrog et al. 2011, 2014;). However, comparative analyses of reptilian sex chromosomes 

have been largely constrained by limited knowledge of sex-determining systems in several 

important lineages, and by failure to identify sex chromosomes in many of the species 

investigated (Janzen and Krenz 2004; Sarre et al. 2004; Pokorná and Kratochvíl 2009). 

Because of widespread occurrence of sex microchromosomes, and the lack of visibly 

heteromorphic sex chromosomes in many taxa with GSD, sex chromosomes may have been 

overlooked in some species in which the karyotype has been examined using only standard 

cytogenetic techniques, such as chromosome staining and banding. The identification of 

homomorphic or poorly differentiated sex chromosomes may thus require the application of 

high-resolution cytogenetic techniques, such as comparative genomic hybridization (CGH). 

Indeed, CGH has successfully detected cryptic, but molecular differentiated, sex chromosomes 

in several reptiles (Ezaz et al. 2005, 2006b; Kawai et al. 2007; Martinez et al. 2008; 

Badenhorst et al. 2013). Next-generation sequencing technologies also offer promising 
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alternatives for sex chromosome discovery. For instance, restriction site-associated DNA 

sequencing (RAD-seq) has been recently used to discover sex-linked markers and sex-

determining regions and subsequently infer the occurrence of male or female heterogamety in 

gecko species (Gamble et al. 2015). 
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Figure 2. Pruned phylogenetic tree showing the distribution of sex determining 

systems among amniote lineages with known sex-determining mechanisms (left), and 

non-homology of sex chromosomes in reptiles (right). The phylogenetic 

reconstruction follows Organ and Janes (2008), Pokorná and Kratochvíl (2009), and 

Valenzuela and Adams (2011). Divergence time estimates according to Shedlock and 

Edwards (2009), Hedges et al. (2015). The schematic representation of non-

homologous sex chromosomes is modified from Ezaz et al. (2009a). Asterisks indicate 

the occurrence of species with GSD without identified sex chromosomes. 
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2.3 Multiple origins of reptilian sex chromosomes 

On the whole, the high variability of sex chromosomes and the haphazard distribution of sex 

determining systems across the reptile phylogeny (Sarre et al. 2004, 2011; Janzen and Phillips 

2006; Organ and Janes 2008; Pokorná and Kratochvíl 2009) suggest that transitions between 

sex-determining systems have occurred in many lineages (Sarre et al. 2011; Johnson Pokorná 

and Kratochvíl 2014), and that novel sex chromosomes will have arisen also multiple times. 

Indeed, data obtained from chromosome painting, comparative gene mapping and in silico 

analysis of whole genomes confirmed the independent origin of sex chromosomes in several 

reptile lineages. Comparisons with the chicken Z chromosome revealed conserved synteny in 

the majority of reptiles (Pokorná et al. 2011), but non-homology between avian and reptile sex 

chromosomes, implying that they evolved from different pairs of autosomes (Ezaz et al. 

2009c; Alföldi et al. 2011; Pokorná et al. 2011).  

In particular, the chicken Z chromosome is homologous to the short arm of snake 

chromosome 2, and the snake Z corresponds to chicken chromosomes 2 and 27 (Matsuda et al. 

2005; Matsubara et al. 2006, 2012; Kawai et al. 2007; Pokorná et al. 2011) (Fig. 2). Chicken Z 

chromosome showed homology to chromosome 6 in two turtle species (Trachemys scripta, 

Emydidae and Pelodiscus sinensis, Trionychidae) (Kasai et al. 2003; Matsuda et al. 2005; 

Kawai et al. 2007; Pokorná et al. 2011). Conversely, the ZW sex chromosomes of P. sinensis 

have conserved linkage homology with chicken chromosome 15 (Kawagoshi et al. 2009), 

whereas the XY sex chromosomes of the black marsh turtle (Siebenrockiella crassicollis, 

Geoemydidae) share linkage homology with chicken chromosome 5 (Kawagoshi et al. 2012). 

In lizards, physical mapping of protein-coding genes identified regions orthologous to chicken 

Z on chromosome 2 in Pogona vitticeps (Agamidae) chromosome 2 and Anolis carolinensis 

(Dactyloidae) (Ezaz et al. 2009c; Alföldi et al. 2011; Young et al. 2013), and on a small 

acrocentric autosome in Lacerta agilis (Lacertidae) (Srikulnath et al. 2014). On the other hand, 

the Z chromosome of P. vitticeps showed homology with chicken chromosome 23; the X 

microchromosome of A. carolinensis has homology with chicken chromosome 15; and the Z 

chromosome of L. agilis is homologous to chicken chromosomes 6 and 9 (summarized in Fig. 

2). At a finer taxonomic scale, the ZW sex microchromosomes of three Australian dragon 

lizards (P. vitticeps, P. barbata and Amphibolurus nobbi) are presumably homologous, but 

those of a fourth species (Ctenophorus fordi) are not (Ezaz et al. 2009b). In geckos, the ZW 

sex chromosomes of Gekko hokouensis are homologous neither with the ZW chromosomes of 

Christinus marmoratus (Matsubara et al. 2014) nor with the with XXY systems of Coleonyx 
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elegans and Lialis burtonis (Pokorná et al. 2011). 

Collectively, these data support the notion that sex chromosomes have evolved 

independently multiple times in birds, turtles and squamate reptiles. In this context, it is 

surprising that the Z chromosome of the lizard Gekko hokouensis (Kawai et al. 2009) and the 

XY chromosomes of giant musk turtles (Staurotypus triporcatus and S. salvinii; Kawagoshi et 

al. 2014) have conserved linkage homology with avian ZW sex chromosomes. This suggests 

that the three sex chromosome systems share the same origin but, nonetheless, turtles and 

birds acquired different systems of heterogametic sex determination during their evolution. 

Hence, the remaining reptilian clades would have more recent, and independently derived, sex 

chromosomes. Moreover, the discovery of partial synteny of sex chromosomes in birds and 

monotremes, the sister group to therian mammals (Rens et al. 2007; Veyrunes et al. 2008), led 

to the hypothesis that the common amniote ancestor had a birdlike ZW system (e.g., O’Meally 

et al. 2012). 

However, given the general lack of homology of reptilian sex chromosomes described 

above, G. hokouensis and Staurotypus turtles seem to be exceptions among reptiles. Also, 

recent phylogenetic analyses that argue for TSD as the ancestral sex-determining mechanism 

for amniotes (Pokorná and Kratochvil 2009; Johnson Pokorná and Kratochvíl 2014). 

Therefore, the observed synteny of sex chromosomes in monotremes, birds, gekko and 

Staurotypus turtles might not reflect homology but convergent evolution; that is, the same 

genomic regions have been co-opted as sex chromosomes independently several times, 

perhaps because it contains genes (such as DMRT1) that are particularly suitable for a role in 

sex determination (Graves and Peichel 2010; O’Meally et al. 2012). 

2.4 Turnover of sex chromosomes vs. the evolutionary trap hypothesis 

The identification of independently derived sex chromosomes in reptiles create exciting new 

opportunities to gain a deeper insight into the general processes involved in sex chromosome 

evolution, to investigate why sex determination is labile in some taxa and not in others, and to 

test hypothesis related to transitions among sex-determining systems. One of such hypothesis 

posits that sex chromosomes can act as an evolutionary trap (Bull and Charnov 1977; Bull 

1983; Pokorna and Kratochvıl 2009; Bachtrog et al. 2014). According to it, differentiated, 

nonrecombining sex chromosomes preclude transitions to other sex-determining systems. 

Transitions are prevented mainly due to the accumulation of sexually antagonistic and sex-
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essential genes on differentiated sex chromosomes, and/or the loss of functional genes from 

the Y (or W) chromosome. This would cause a lower fitness of sexually reverted individuals 

(e.g., XX males, XY females), or YY (WW) individuals, which arise when sex determination 

is hijacked by another chromosome pair, inhibiting the spread of new sex-determining genes 

(see Bachtrog et al. 2014; van Doorn 2014). 

Under the evolutionary trap hypothesis, transitions are only possible from young or 

otherwise poorly differentiated sex chromosomes, or else from TSD (lacking sex 

chromosomes) to XY or ZW systems. Indeed, homomorphic sex chromosomes in fish and 

amphibians often exhibit high rates of turnover between species (e.g., Miura 2007; Takehana 

et al. 2007; Ross et al. 2009; Kikuchi and Hamaguchi 2013). Conversely, the evolutionary 

stability of sex chromosomes in birds or mammals is consistent with the idea that 

heteromorphic sex chromosomes constrain shifts in sex determination. Currently available 

data for reptiles also support the trap-like behaviour of sex chromosomes, which might explain 

the unequal distribution of variability in sex determination across reptilian lineages. If 

transitions from TSD to GSD are much easier and frequent than transitions in the opposite 

direction, the diversity of sex-determining systems in certain amniote lineages could be 

explained by their ancestral TSD and several independent transitions to GSD (Pokorná and 

Kratochvíl 2009; Johnson Pokorná and Kratochvíl 2014). In this regard, it is noteworthy that 

non-homologous sex chromosomes have been only identified so far within reptilian clades 

where at least some members possess TSD: geckos, dragon lizards, and turtles (see section 

2.3; Johnson Pokorná and Kratochvíl 2014). Also, sex chromosomes show no homology 

between birds and snakes, separated by TSD crocodiles, and sex chromosome in a lacertid 

lizard evolved independently from those of snakes, iguanas and the bearded dragon, separate 

by ESD agamids. By contrast, clades with GSD as the ancestral state are predicted to have 

homologous sex chromosomes. In agreement, recent molecular analyses demonstrated a high 

conservation of sex chromosomes in colubroid snakes (Matsubara et al. 2006; Vicoso et al. 

2013), Anolis lizards (Gamble et al. 2014; Rovatsos et al. 2014a), and across most other 

lineages of iguanas (Rovatsos et al. 2014b). Karyotype data also suggest long-term 

conservation of sex chromosomes in teiids and gymnophthalmids (male heterogamety), in 

lacertids (female heterogamety), and Anguimorpha (anguids, helodermatids, and varanids; 

female heterogamety) (Pokorná and Kratochvíl 2009; Johnson Pokorná and Kratochvíl 2014); 

unfortunately, molecular or molecular-cytogenetic data testing the homology of sex 

chromosomes are still lacking for these lineages, and so transitions that do not involve a 
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change in heterogamety may have beeen overlooked. 

A good example of "hidden" turnover of sex chromosomes has been recently reported in 

dipteran insects, generally considered to show a stable XY system (Vicoso and Bachtrog 2013, 

2015). Whole-genome analysis of 37 fly species revealed numerous transitions of sex 

chromosomes over the course of Diptera evolution, where sex chromosomes have been lost, 

gained, rearranged or replaced by a new chromosomal pair. For instance, all Drosopila species 

have newly evolved XY sex chromosomes, while the ancestral sex chromosome pair (the dot 

chromosome or Muller element F) is now autosomal (Vicoso and Bachtrog 2013). 

Another recent work in the dragon lizard P. vitticeps challenges the prediction that GSD 

systems should be stable with respect to replacement by TSD. As mentioned before, this 

species has recognizable sex chromosomes with female heterogamety; however, sex reversed 

females (ZZ females) were observed in the wild at the warmer ends of the animals geographic 

range (Holleley et al. 2015). Mating of normal mates to sex-reversal females produced viable 

and fertile—and exclusively ZZ—offspring, whose phenotypic sex was basically determined 

by the temperature at which eggs are incubated. This illustrates how the rapid transition from 

GSD to TSD may occur in the wild in response to extreme environmental conditions (high 

temperatures). Importantly, ZZ females had markedly higher fecundity that ZW females, 

which raises interesting questions about the relative advantages of the two sex determining 

systems and the possible cost of sex chromosome degeneration (Bull 2015). 

In light of these recent findings, it seems clear that our understanding of the evolution of sex 

determination is far from complete, and will undoubtedly benefit from comparative studies of 

sex chromosomes in diverse non-model taxa. For example, evaluating the homology of sex 

chromosomes in those lizard groups with presumably conserved sex chromosomes (e.g., 

lacertids) is an important first step to assess whether the trap-like behaviour is a general 

consequence of sex chromosome evolution or, instead, the stability observed in mammals, 

birds or snakes is somehow exceptional. In addition, this will help clarify if the high frequency 

of homomorphic sex chromosomes in lizards are related to a rapid turnover of sex 

chromosomes or, on the contrary, to slow rates of degeneration of the heterogametic sex 

chromosome, as explained in section 2.1.1. 
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3. Satellite DNA: features and evolution

Eukaryotic genomes contain a large proportion of repetitive DNA sequences which, according 

to an organizational criterion, can be classified into two main categories: (1) dispersed 

repeats—mostly transposable elements—scattered thoughout the genome, and (2) tandem 

repeats, restricted at specific locations and organized in consecutive or nearly consecutive 

copies copies along a DNA strand (López-Flores and Garrido-Ramos 2012). Among the latter, 

there are moderately repetitve elements―including gene families such as globins, histones and 

ribosomal RNA genes (rDNA)―as well as highly repetitive non-coding microsatellite and 

satellite DNAs (Richard et al. 2008; López-Flores and Garrido-Ramos 2012).  

Satellite DNAs (satDNAs) constitute one of the most abundant fractions of repetitive 

sequences in almost all  eukaryotic species, representing in some cases over 50% of genomic 

DNA (Elder and Turner 1995; Plohl et al. 2008). They are organized as long arrays of head-to-

tail linked repeats (monomers), typically spanning up to several megabases. As the main 

components of constitutive heterochromatin, they are usually located in the (peri)centromeric 

and/or telomeric regions of chromosomes, but may be also found at interstitial chromosomal 

locations (Plohl et al. 2012), or even with a chromosome-specific distribution [e.g. The RAYSI 

satellite family amplified in the Y sex chromosome of the plant Rumex acetosa and relatives 

(Navajas-Pérez et al. 2005)]. The basic repeting units (monomers) of satDNAs are usually AT-

rich and range in length from only a few base pairs (bp) to more than 1 kb (Plohl et al. 2008). 

The preferential monomer length of 150-180 bp and 300-360 bp observed in many in many 

satellites in both plants and animals is often considered to reflect requirements of DNA length 

wrapped around one or two nucleosomes, to facilitate regular phasing of nucleosomes in the 

heterochromatin (Schmidt and Heslop-Harrison 1998; Henikoff et al. 2001). 

Several different satDNA families can be present in a species, and they differ not only in 

monomer length, but also in nucleotide composition, sequence complexity, genomic 

abundance and in evolutionary history (Plohl 2010). SatDNAs represent fast-evolving 

components of genomes, undergoing rapid changes in array size and sequence composition 

(Plohl et al. 2012; Garrido-Ramos 2015). Yet, contrary to what may be expected, monomers of 

a satDNA family maintain a high degree of intraspecific sequence conservation. Sequence 

homogeneity is a result of non-independent evolution of repetitive units. That is, mutations do 

not accumulate in a single monomer sequence, but they either spread among repetitve units 

they become eliminated (Plohl et al. 2012). This evolutionary model, known as concerted 
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evolution, is achieved through a process of molecular drive, consisting of sequence 

homogenization within a genome and fixation of sequence variants among reproductively 

linked individuals (Dover 1986, 2002). The final outcome of concerted evolution is higher 

repeat homogeneity within lineages (strains, populations, subspecies, species, etc.) than 

between them (Dover, 1982; Rudd et al 2006; Plohl et al. 2008). 

Sequence homogenization in the genomic level is due to diverse molecular mechanisms of 

nonreciprocal transfer, such as unequal crossover, gene conversion, rolling circle replication 

and reinsertion, and transposon-mediated exchange (Stephan, 1986; Dover, 1986, 2002). All 

these mechanisms, excluding gene conversion, may induce extensive variations in copy 

number of satDNA repeats, resulting in array length polymorphism and, potentially, in the 

rapid amplification/contraction of satDNA arrays in short evolutionary periods (e.g., Cheng et 

al. 2002; Nijman and Lenstra 2001; Plohl et al. 2012). In some cases, this dynamic behaviour 

of satDNAs has been associated with chromosomal rearrangements,and even with 

reproductive isolation and speciation (Wichman et al. 1991; Bradley and Wichman 1994; 

Slamovits et al. 2001; Slamovits and Rossi 2002; Ferree et al. 2012) 

Another important by-product of the mechanisms of sequence homogenization is a higher 

degree of sequence similarity among adjacent repeats than among repeats retrieved at random 

(Dover 1986). Thus, monomers of a satDNA family can often be grouped into subsets or 

subfamilies, defined by diagnostic mutations, which are usually chromosome-specific (Willard 

and Waye 1987; Hall et al. 2005). Adjacent monomer variants can be sometimes homogenized 

together and form a new, composite higher-order repeat (HOR) unit in which former 

monomers now constitute subunits (Willard and Waye, 1987; Warburton and Willard, 1990). 

This complex organization is typical, for example, of the centromeric alpha satellite of 

primates (e.g.  Alexandrov et al. 2001), but seems to be a common trend in other satDNA 

families and organisms, includin bovids and beetles (Modi et al. 2004; Mravinac et al. 2005; 

Palomeque et al. 2005).  

According to the model of satDNA evolution depicted above, molecular drive is an 

essentially stochastic process, during which mutations rapidly accumulate in a gradual manner, 

leading to divergent evolution of satellite repeats in reproductively separated groups of 

organisms (Bachmann and Sperlich 1993). However, high rates of sequence change are not 

characteristic of all satDNAs; instead, some satellite families seem to be rather ancient and are 

widely distributed among higher taxa (Abad et al. 1992; Arnason et al. 1992; Robles et al. 
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2004). Indeed, the nucleotide sequence of some satellite families have remained "frozen" over 

long evolutionary periods (see, for example, Mravinac et al. 2002; Plohl et al. 2010). Long-

term sequence conservation, and irregular distribution of sequence variability along the 

monomer sequence, has been commonly interpreted as an indicative of functional constraints 

on part of repeat monomers or motifs (Meštrović et al. 2006; Plohl et al. 2008) . The best-

known example is the 17-bp motif, known as the CENP-B, of alpha satDNA in human and 

other primates, which is proposed to act as a centromere protein binding site (Masumoto et al. 

2004). The functionality of other conserved sequence segments detected in satDNA monomers 

remains obscure, but they could be related to any of the diverse roles ascribed to satDNAs. In 

fact, and in contrast with earlier ideas of satDNA being "junk" (Ohno 1972) or "selfish" (Orgel 

and Crick 1980), there is growing evidence showing that it may have important functional 

roles in a genome, being involved in centromere formation and function, heterochromatin 

assembly, regulation of gene expression and in epigenetic regulatory processes (reviewed in 

Ugarković 2009; Pezer et al. 2012).  

Notwithstanding the possible selective constraints on monomer sequences, the overall 

turnover rate (i.e., homogenization and fixation) of a satDNA families is a complex feature 

that depends on many factors, which will be later explored in Chapter III. Even despite 

decades of intensive research, satDNA and heterochromatin are still the most enigmatic 

genomic compartments, and many questions about their origin and evolution remain open. In 

addition, studies focused on specific evolutionary questions are still scarce for several major 

taxonomic groups, including reptiles. New data from these poorly studied groups could add 

valuable information on the general principles and mechanisms that govern satDNA evolution, 

as well as on specificities of particular systems. 

4. The study species

4.1 The family Lacertidae 

The lizard family Lacertidae Oppel, 1811 consists of about 321 species in 42 genera (Uetz and 

Hošek 2015), and is found widely in Eurasia and Africa (Arnold et al. 2007). The Lacertidae is 

the most species-rich family of lizards focused on Europe, where it also presents a high 

number of endemisms [48 endemisms out of 65 European species (73.8%); Cox and Temple 

2009]. Recent molecular analyses strongly support the monophyly of lacertids, and suggest 

that they may be the sister-group of the Amphisbaenia, the worm lizards (Townsend et al. 
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2004; Vidal and Hedges 2005; Pyron et al. 2013). 

The family is divided into two subfamilies, the Gallotiinae and Lacertinae, with the latter 

group composed of two monophyletic tribes: the Eremiadini of Africa and arid southwest and 

central Asia, and the Lacertini of Europe, northwest Africa and southwest and east Asia (see 

Arnold et al. 2007 for a review of lacertid systematics). The Lacertidae probably arose in the 

European area, with the Gallotiinae later reaching Northwest Africa and the Canary Islands, 

and the ancestor of the Eremiadini invading Africa in the mid-Miocene. A molecular clock 

based on mitochondrial DNA sequences suggests that the separation of the Gallotinae and 

Lacertinae occurred around 20 mya, while the separation of the Eremiadini from the Lacertini 

may have been around 16 mya (Arnold et al. 2007). The Lacertini spread through much of 

their present European range and split into most of its component living genera about 12-16 

mya, so they underwent quite rapid speciation at this time (but see Hipsley et al. 2009 for older 

divergence time estimates, around 43-46 mya). Most genera in the Lacertini have largely 

allopatric and often disjunct ranges, which may mean that initial spread of the groups was 

followed or accompanied by multiple vicariance (Arnold et al. 2007).  

Until relatively recently many European lizards were included within the widespread, 

highly polyphyletic genus Lacerta; however sucessive taxonomic studies have now allocated a 

number of these species to endemic European genera (including Dalmatolacerta, 

Dinarolacerta, Hellenolacerta and Iberolacerta) (e.g., Arnold 1973; Olmo et al. 1991; Arribas 

1999; Fu et al. 1997; Carranza et al. 2004; Arnold et al. 2007). In the most recent revision, the 

approximately 100 species of Lacertini have been classified into 19 genera (Arnold et al. 2007; 

see also Speybroek et al. 2010 for an updated species list of the European herpetofauna). 

However, the systematics of the tribe remains complex and phylogenetic relationships among 

and within many genera are unresolved (Arnold et al. 2007; Pavlicev and Mayer 2009; Kapli 

et al. 2011). 

4.2 The genus Iberolacerta 

West European Rock lizards, Iberolacerta Arribas, 1997 comprise a group of closely related 

species of medim-sized lacertine lizards, formerly included in the genus Lacerta. It is almost 

entirely confined to small widely separated mountain areas in the Iberian Peninsula and in the 

Balkan Peninsula (I. horvathi) (Fig. 3; Mayer and Arribas 2003; Carranza et al. 2004).  



Verónica Rojo Orons 

24 

Figure 3. (Top) Distribution map for the genus Iberolacerta. 1: I. horvathi; 2: 

Pyrenenan group; 3: I. cyreni; 4: I. martinezricai; 5: I. galani; 6: I. monticola. 

(Bottom) Adult male of I. monticola from the Natural Park of Fragas do Eume (A 

Coruña, Spain).  

Until very recently, (Salvador 1974, 1984; Arnold & Burton 1987; Barbadillo 1987; Pérez-

Mellado 2002) all populations of the genus Iberolacerta were considered to belong to 
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Iberolacerta monticola (Boulenger, 1905). Extensive taxonomic revision—using 

morphological and osteological data  (Arribas 1996 and 1998), karyotypes (Odierna et al. 

1996; Arribas and Odierna 2005; Arribas et al. 2006), allozyme-electrophoresis studies (Mayer 

& Arribas 1996; Almeida et al. 2002), and phylogenetic analyses including DNA sequences 

(Mayer & Arribas 2003; Crochet et al. 2004; Carranza et al. 2004; Arribas et al. 2006; Galán et 

al. 2007; Arribas et al. 2014)—indicated that I. monticola was, in fact, a species complex. As a 

result of all these analyses Iberolacerta cyreni (Müller & Hellmich, 1937) and I. bonnali 

(Lantz, 1927) were upgraded to the species level (Arribas 1993a, 1996; Perez-Mellado et al. 

1993), and four new species were described: I. aranica (Arribas, 1993), I. aurelioi (Arribas, 

1994), I. martinezricai (Arribas, 1996), and I. galani Arribas, Carranza and Odierna, 2006 

(Arribas 1993b, 1994, 1996; Mayer & Arribas 1996; Arribas & Carranza 2004; Arribas & 

Odierna 2005; Arribas et al. 2006).  

So, there are currently eight recognized species in Iberolacerta, which can be classified into 

three main units (Fig. 3): 1) the Horvath’s Rock lizard I. horvathi (Méhely, 1904), with a 

patchy distribution across the Eastern Alpine and North Dinaric mountain ranges;  2) Pyrenean 

Rock lizards, also known as the “Pyrenean group” or “bonnali-group”, which belong to the 

subgenus Pyrenesaura Arribas, 1999 and include three allopatric species present at high 

altitudes (usually above 2000 m) in the Pyrenees: Iberolacerta aranica, I. aurelioi and I. 

bonnali; and 3) Iberian Rock lizards, also known as the “Iberian group” or “monticola-group”, 

which includes I. cyreni, I. martinezricai, I. galani and I. monticola. The first taxon comprises 

I. cyreni cyreni (Müller & Hellmich, 1937) from the Sierra de Guadarrama, and I. c. castiliana

(Arribas, 1996) from the Sierra de Gredos. Iberolacerta martinezricai is mainly found in Peña

de Francia (Salamanca), while I. galani inhabits the southern part of the Montes de León.

Finally, I. monticola is nominally divided into I. monticola monticola (Boulenger, 1905),

restricted to the Serra da Estrela in Portugal, and I. m. cantabrica (Mertens, 1929), distributed

across a wide area in northwest Spain. In addition, a recent study described a new subspecies

of I. monticola, I. m. astur Arribas, Galán, Remón and Naveira, 2014, which inhabits the

Northern Montes de León (Arribas et al. 2014). The restricted and generally fragmented

distributions of these endemic species render them particularly vulnerable to extinction. In

fact, four of the eight species are defined as "endangered" (I. cyreni, I. aranica, I. aurelioi),

and "critically endangered" (I. martinezricai) in the IUCN Red List of Threatened Species

(2015), according to its extent of occurrence, its distribution (severely fragmented), and the

quality and extent of its habitat (in continuing decline).
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Cytogenetic surveys based on conventional staining and banding techniques demonstrated 

that Iberolacerta is a karyologically heterogeneous group, with interspecific variability both in 

chromosome number and karyotype macrostructure, as well as in the degree of sex 

chromosome differentiation (Odierna et al. 1996; Arribas and Odierna 2005; Arribas et al. 

2006). Indeed, while some species (I. aranica, I. monticola, and I. martinezricai) appear to 

lack differentiated sex chromosomes, others (I. horvathi, I. cyreni, and I. galani) show a highly 

heteromorphic ZW pair, and yet other species (I. aurelioi and I. bonnali) have multiple Z1Z2W 

chromosome systems. Interestingly, this diversity of sex chromosomes shows no clear 

phylogenetic segregation (see Chapter I). The phylogeny and evolutionary history of 

Iberolacerta are relatively well known, and support the monophyly of the genus (Mayer and 

Arribas 1996; Almeida et al. 2002; Mayer and Arribas 2003; Carranza et al. 2004; Crochet et 

al. 2004; Arribas et al. 2006, 2014; Arnold et al. 2007).  

However, the phylogenetic relationships among some taxa are still controversial, due to the 

low support or contradictory results produced by different molecular markers and different 

methods of phylogenetic reconstruction. Main discrepancies concern the position of I. horvathi 

(i.e., sister to all the remaining species or grouped either with the Pyrenean or with the Iberian 

groups), as well as the relative order of speciation events within Pyrenesaura and the clade 

formed by monticola-galani-martinezricai. Failure to resolve the phylogenetic relationships 

and track lineage splitting has been generally attributed to a rapid succession of speciation 

events within this group (see Mayer and Arribas 2003; Carranza et al. 2004; Crochet et al. 

2004; Arribas et al. 2006, 2014). The phylogenetic affinities and estimates of divergence times 

used in this thesis report will follow the most recently published phylogeny (Arribas et al. 

2014), and they will be detailed later throughout the next sections, since they provide a 

framework to trace not only the differentiation process of their sex chromosomes (Chapters I 

and II), but also the evolutionary dynamics of the two satDNA families analyzed (Chapter III). 
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AIMS AND OBJECTIVES 





Aims and objectives

Within  the  broad  aim of  investigating  sex  chromosome and  karyotype  evolution  in  lacertid

lizards, the particular objectives of this thesis are:

 To better characterize the karyotype of  Iberolacerta monticola  and potentially identify

cryptic  sex  chromosomes;  and  to  compare  these  new  data  with  the  cytogenetic

information  available  for  other  Iberolacerta  species,  in  order  to  clarify  chromosome

evolution within this genus.

 To carry out a comparative analysis of sex chromosomes and evaluate the homology of

ZW systems  among  five  lacertid  species  using  molecular  cytogenetic  techniques;  to

perform a genome-wide comparison and detect chromosomal rearrangements between I.

monticola,  Timon  lepidus and  Lacerta  schreiberi;  and  to  investigate  chromosome

homology between I. monticola and more distantly related reptilian species through PCR-

assisted gene mapping.

 To analyze the patterns of sequence variability, genomic organization, and chromosomal

distribution of two satellite DNA families in all eight  Iberolacerta  species, in order to

understand the processes that determine the structure and evolutionary dynamics of these

repetitive elements, and their possible role in chromosomal evolution.
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Abstract 

Rock lizards of the genus Iberolacerta constitute a promising model to examine the process of 

sex chromosome evolution, as these closely related taxa exhibit remarkable diversity in the 

degree of sex chromosome differentiation with no clear phylogenetic segregation, ranging 

from cryptic to highly heteromorphic ZW chromosomes and even multiple chromosome 

systems (Z1Z1Z2Z2/Z1Z2W). To gain a deeper insight into the patterns of karyotype and sex 

chromosomes evolution, we performed a cytogenetic analysis based on conventional and 

differential staining, fluorescence in situ hybridization and comparative genomic hybridization 

(CGH) in the species Iberolacerta monticola, for which previous cytogenetic investigations 

did not detect differentiated sex chromosomes. The karyotype is composed of 2n=36 

acrocentric chromosomes. NORs and the major ribosomal genes were located in the 

subtelomeric region of chromosome pair 6. Hybridization signals of the telomeric sequences 

(TTAGGG)n were visualized at the telomeres of all chromosomes and interstitially in five 

chromosome pairs. C-banding showed constitutive heterochromatin at the centromeres of all 

chromosomes, as well as clear pericentromeric and light telomeric C-bands in several 

chromosome pairs. These results highlight some chromosomal markers which can be useful to 

identify species diagnostic characters, although may not accurately reflect the phylogenetic 

relationships among taxa. In addition, C-banding and CGH revealed the presence of a 

heteromorphic ZW sex chromosome pair, where W is smaller than Z and almost completely 

heterochromatic, showing a massive accumulation of female-specific sequences. This finding 

sheds light on sex chromosome evolution in the genus Iberolacerta and suggests that further 

comparative cytogenetic analyses are needed to understand the processes underlying the 

origin, differentiation and plasticity of sex chromosome systems in lacertid lizards. 

Key Words: Rock lizards · Comparative cytogenetics · Chromosome banding · FISH · 

Sex chromosomes 
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Introduction 

The genus Iberolacerta is a group of rock lizards (family Lacertidae) mainly distributed in 

highland areas of Western Europe. According to recent taxonomic revisions (Mayer and 

Arribas 2003; Arribas and Carranza 2004; Carranza et al. 2004; Crochet et al. 2004; Arribas 

and Odierna 2005; Arribas et al. 2006), the genus Iberolacerta comprises eight species, which 

can be subdivided into three main units: 1) I. horvathi, occurring in the Eastern Alps and the 

north of the Dinaric Chains; 2) the subgenus Pyrenesaura, which includes the three species 

found in the Pyrenees Mountains, namely I. aranica, I. aurelioi and I. bonnali; and 3) the four 

species included in the “Iberian group”, i.e., I. cyreni, I. martinezricai, I. galani and I. 

monticola, with disjunct distributions in central and northern mountain ranges of the Iberian 

Peninsula. 

The phylogeny of this genus has been under continual revision, but the evolutionary 

relationships among some taxa still remain unresolved (Mayer and Arribas 2003; Carranza et 

al. 2004; Crochet et al. 2004; Arribas et al. 2006, 2014). Within the Iberian group, data from 

mitochondrial genes suggest that I. cyreni split earlier, between 7.3 and 8.5 mya (million years 

ago), while the speciation events within the clade formed by I. martinezricai, I. galani and I. 

monticola occurred considerably later, at the beginning of the Pleistocene (roughly 2.5 mya). 

Recent molecular analyses support the hypothesis that I. monticola was the first lineage to 

diverge from the common branch, shortly before the separation of I. martinezricai and I. 

galani, approximately 1.8 mya (Remón et al. 2013) (Fig. S1, Supplementary Material). 

Karyological studies based on conventional staining and banding techniques have proven 

useful for establishing phylogenetic relationships and delimiting species and subspecies 

boundaries in the genus Iberolacerta, as well as in several other lacertid groups (e.g., Olmo et 

al. 1993; Odierna et al. 1996; Bosch et al. 2003; Kupriyanova and Melashchenko 2011). 

Previous cytogenetic surveys of the Iberolacerta species (Capula et al. 1989; Odierna et al. 

1996; Arribas and Odierna 2005; Arribas et al. 2006) showed a common diploid number of 

2n=36 and a similar karyotypic macrostructure, with all chromosomes acrocentric. Only the 

karyotypes of the three Iberolacerta species from the Pyrenees differ from this formula, with 

reduced diploid numbers that range from 2n=24 to 26 in males and from 23 to 26 in females 

and numerous biarmed chromosomes, which probably evolved from the ancestral acrocentric 

complement through a series of Robertsonian fusions (Odierna et al. 1996) (Fig. S1, 

Supplementary Material). 
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Interestingly, C-banding analyses uncovered high levels of diversity regarding the sex 

chromosome system. A ZW sex chromosome pair, in which the W chromosome is smaller than 

the Z and highly heterochromatic, has been described in I. horvathi, I. cyreni and I. galani 

(Capula et al. 1989; Odierna et al. 1996; Arribas et al. 2006). In contrast, the sex chromosomes 

of I. aranica, I. martinezricai and I. monticola are reported to be homomorphic and 

indistinguishable by differences in size, morphology or heterochromatinization (Odierna et al. 

1996; Arribas and Odierna 2005). More significant differences are present in the Pyrenean 

species I. bonnali and I. aurelioi, with multiple Z1Z2W/Z1Z2Z1Z2 sex chromosome systems 

where the W chromosome is biarmed and the Z1 and Z2 counterparts are uniarmed (Odierna et 

al. 1996) (Fig. S1, Supplementary Material). The presence of ZW-derived multiple sex 

chromosome systems is a particularly uncommon feature within lizards, so far reported for 

only two other species of lacertids, namely Zootoca vivipara and Podarcis taurica (Olmo and 

Signorino 2005). 

The heterogeneous situation concerning sex chromosomes in the genus Iberolacerta is 

illustrative of the wide diversity of sex chromosomes found in the family Lacertidae. Female 

heterogamety is considered to be universal within this family. Even so, sex chromosomes at 

different stages of differentiation are frequently found between closely related species and 

even between populations of the same species, suggesting that sex chromosomes can have 

multiple and independent origins in related lacertid taxa (e.g., Olmo et al. 1987; Odierna et al. 

1993, 2001; Bosch et al. 2003). 

Typically, sex chromosomes are thought to evolve after suppression of recombination 

through increasing stages of differentiation, from a primitive form, in which nascent sex 

chromosomes differ only in a limited region and are otherwise indistinguishable, to an 

advanced state in which sex chromosomes are highly heteromorphic (Charlesworth et al. 2005; 

recently reviewed in Charlesworth and Mank 2010). Reports on lacertid karyotypes, mainly 

accomplished through conventional banding techniques, suggest that lacertid sex 

chromosomes have evolved primarily via heterochromatinization followed by degeneration of 

the female-specific W chromosome, although this is probably not the only mechanism 

operating in this family (Olmo et al. 1986; Olmo et al. 1987; Ezaz et al. 2009). Chromosomal 

rearrangements, such as inversions or translocations, can be also involved in the primary 

differentiation of lizard sex chromosomes (for a review see Olmo et al. 1987; Ezaz et al. 

2009), implying that even newly evolved sex chromosomes can be heteromorphic 
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(Charlesworth and Mank 2010). In this regard, comparative cytogenetic analyses within the 

genus Iberolacerta can provide valuable insights into the processes underlying the origin, 

differentiation and evolutionary transitions of sex chromosomes.  

In this study, we focus on one of the Iberolacerta species for which previous cytogenetic 

investigations did not detect differentiated sex chromosomes, I. monticola. This species is 

distributed across a wide area in the north of the Iberian Peninsula, along the Cantabrian 

mountain range, where it inhabits mainly rocky habitats at middle-high altitudes (Mayer and 

Arribas 2003; Crochet et al. 2004; Carranza et al. 2004). Apart from this continuous area, there 

are several other isolated populations in the Serra da Estrela mountains, in Portugal, and in 

Galicia, at the north-west corner of Spain (fig. 1). Some populations in this last region are 

found at areas of exceptionally low altitudes, most of them associated to Atlantic forests in 

shady fluvial gorges (Galán 1999; Galán et al. 2007). 

Fig. 1. Map of the Iberian Peninsula showing the current distribution area of I. 

monticola (blue areas). Numbers represent localities sampled in the present study: (1) 

Puerto de Vegarada, (2) Villabandín, (3) Salientes and (4) Eume. See text for further 

details. 

The karyotype of I. monticola has been previously described based on conventional staining 

and banding techniques (C-banding and silver (Ag)-staining) for the populations of Puerto de 

Vegarada, in the Cantabrian mountains, and Serra da Estrela (Odierna et al. 1996). Here, we 
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re-investigate the specimens from the Cantabrian population (locality 1 in Fig. 1) and extend 

the cytogenetic analysis to two additional isolated populations from the Cantabrian area, 

Villabandín and Salientes (localities 2 and 3 in Fig. 1, respectively), as well as to the lowland 

population of Eume, in the northwestern-most edge of the species’ range (locality 4 in Fig. 1), 

with the aim to (1) better characterize the karyotype of I. monticola, and perform a 

comparative cytogenetic analysis within a phylogenetic framework, in order to clarify 

chromosome evolution within the genus Iberolacerta and (2) search for sex-specific 

differences that enable the identification of cryptic sex chromosomes. This was accomplished 

by using conventional staining and banding techniques (C-banding and differential 

fluorochrome staining), as well as comparative genomic hybridization (CGH) and 

fluorescence in situ hybridization (FISH) with 18S-5.8S-28S rDNA and telomeric (TTAGGG)n 

probes. 

Material and Methods 

Specimens 
One adult male and one adult female of I. monticola were collected from each of the following 

localities: 1) Puerto de Vegarada (UTM: 30T TN98), 2) Villabandín (UTM: 29T QH35), 3) 

Salientes (UTM: 29T QH19) and 4) the fluvial valley of the river Eume (UTM: 29T NJ70) 

(Fig. 1). Permissions for fieldwork and ethics approval of experimental procedures were 

issued by the competent authorities, Xunta de Galicia and Junta de Castilla-León, in Spain, in 

accordance with the Spanish legislation (Royal Decree 1201/2005 and Law 32/2007, on the 

protection of animals used for experimentation and other scientific purposes). 

Phenotypic sex was determined on the basis of external morphology and then confirmed via 

visual inspection of gonads upon dissection. 

Cell culture and chromosome preparations 

Metaphase chromosome spreads were prepared according to previously described protocols 

(Giovannotti et al. 2009a). Fibroblast cell lines were cultured in RPMI 1640 (Sigma) 

supplemented with 10% fetal bovine serum (Gibco), 100 U/ml penicillin, 100 mg/ml 

streptomycin (Gibco) and 2 mM L-glutamine (Gibco). Cultures were incubated at 30ºC in a 

humidified atmosphere of 5% CO2 in air. When exponential cell growth was observed around 

the primary explants (usually after 2-3 weeks of culture) the cells were trypsinized and 
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subcultivated at a 1:2 split ratio. Following this first passage, the cell lines were grown until a 

70-80% of overall confluence was reached. Six hours prior to harvesting, 0.1 μg/ml colcemid

(Roche) was added to the cultures followed by 30 min of hypotonic treatment in 0.075 M KCl

at 30ºC and fixation in 3:1 methanol:glacial acetic acid. Fifteen microlitres of cell suspension

were dropped onto glass slides and air-dried.

Chromosome staining and banding 
Conventional chromosome staining was performed using a 5% Giemsa solution at pH 7. C-

banding was carried out according to Sumner (1972). C-banded chromosomes were 

independently stained with 10% Giemsa solution at pH 7 for 10 minutes, Chromomycin A3 

(CMA3), 4’,6-diamidino-2-phenylindole (DAPI), and sequentially stained with both 

fluorochromes (Schweizer 1976; Schmid et al. 1983). Ag-staining of nucleolar organizer 

regions (Ag-NORs) was performed as described by Howell and Black (1980). 

Fluorescence in situ hybridization (FISH) 

Chromosomal locations of the 18S-5.8S-28S rRNA genes were determined by FISH as 

described in González-Tizón et al. (2000), with slight modifications, using the DNA probe 

pDm 238 from Drosophila melanogaster (Roiha et al. 1981), labeled by nick translation with 

digoxigenin-11-dUTP (Roche).  

Briefly, the slides were dehydrated by serial ethanol washes (twice for 2 min in 70% 

(vol/vol) ethanol, twice for 2 min in 90% ethanol and once for 5 min in 100% ethanol), air 

dried, and aged at 65ºC for 30 min. Subsequently, they were incubated in DNase-free RNase 

(100 μg/ml in 2x SSC) at 37ºC for 30 min and washed in 2x SSC for 10 min. One hundred ng 

of labelled probe (2.5 μl) were made up to 30 μl with hybridization buffer (50% formamide, 

2xSSC and 10% dextran sulphate), denatured at 75ºC for 15 min, chilled on ice, placed onto 

each slide, covered with a coverslip, and finally sealed with rubber cement. Chromosome 

denaturation was performed in a slide-PCR (MJ Research, MJ 100) as follows: 75ºC for 7 min, 

55ºC for 2 min, 50ºC for 30 s, 45ºC for 1 min, 42ºC for 2 min, 40ºC for 5 min, 38ºC for 5 min 

and 37ºC for 5 min. Hybridization took place at 37ºC overnight in a humid chamber. Post-

hybridization washes consisted of two 5-min incubations in 2x SSC at 37ºC and at room 

temperature respectively, followed by a 5-min incubation in 0.1 M Tris, 0.15 M NaCl, 0.05% 

Tween-20 at room temperature. Signal detection included three consecutive incubation steps, 

at 37ºC for 30 min each, with: i) mouse anti-digoxigenin antibody (Roche), ii) fluorescein 
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isothiocyanate (FITC)-conjugated rabbit anti-mouse IgG (Sigma-Aldrich), and iii) FITC-

conjugated goat anti-rabbit IgG (Sigma-Aldrich). After each incubation step, slides were 

washed three times for 5 min with 0.1 M Tris, 0.15 M NaCl, 0.05% Tween-20 at room 

temperature. Chromosomes were counterstained with 1.5 μg/ml propidium iodide in anti-fade 

medium Vectashield (Vector Laboratories). 

Chromosome mapping of the (TTAGGG)n sites was carried out with a Cy3-labeled pan-

telomeric DNA probe (Cambio) following the manufacturer’s instructions. The slides were 

mounted using the anti-fade medium Vectashield (Vector Laboratories), containing 1.5 μg/ml 

DAPI. 

Comparative genomic hybridization (CGH) 

Total genomic DNA was extracted from ethanol preserved tissues of one male and one female 

of I. monticola using a commercial kit (RealPure Genomic DNA Extraction Kit, Durviz), 

following the manufacturer's instructions. Female genomic DNA was labeled with FITC-dUTP 

while male genomic DNA was labeled with TRITC-dUTP using the Prime-It Random Priming 

Labeling Kit (Agilent Technologies), according to the manufacturer's specifications.  

CGH was performed following Ezaz et al. (2005) with minor modifications. For each slide 

that was made, 250 ng of FITC-labeled female and 250 ng of TRITC-labeled male DNA were 

ethanol-precipitated with 20 μg of glycogen and 4 μg of unlabeled, sheared genomic DNA 

from the homogametic sex (male). Metaphase chromosome slides were dehydrated through 

ethanol series; aged at 65°C for 1 h; denatured in 70% formamide/2x SSC at 70ºC for 1-2 min, 

dehydrated again and air-dried at room temperature until hybridization. Following an 

overnight co-precipitation at -20ºC, the probe mix was centrifuged at 14,000 x g at 4ºC. The 

supernant was discarded and the probe DNA pellet was resuspended in 20 μL of 37ºC pre-

warmed hybridization buffer (50% formamide, 10% dextran sulfate, 2x SSC and 40 mmol/L 

sodium phosphate pH7.0) and resuspended at 37ºC for at least 30 min. The hybridization 

mixture was denatured at 70ºC for 10 min, inmediately chilled on ice for 5 min, and then 15 

μL of the probe mixture was placed as a single drop per slide. Slides were covered with a 

coverslip, sealed with rubber cement and placed inside a humid chamber at 37ºC for 3 days. 

Post-hybridization washes were performed in 0.4x SSC, 0.3% Tween 20 at 55ºC for 2 min, and 

in 2x SSC, 0.1% Tween 20 at room temperature for 2 min. Slides were left to air dry at room 

temperature and mounted with anti-fade medium Vectashield with DAPI (Vector 
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Laboratories). 

Microscopy and data analyses 

Images were captured using an epifluorescence microscope Nikon Microphot-FXA equipped 

with a cooled CCD camera (DS-Qi1Mc, Nikon Instruments). The NIS-Elements D 3.10 

software (Nikon Instruments) was used to capture grey-scale images of DAPI, Cy3/TRITC 

and FITC signals, which were then merged into a color image. Karyotypes were reconstructed 

from reversed greyscale images of C-banded metaphases with Adobe Photoshop CS4 11.0.1 

(Adobe Systems Inc.).  

Results 

Karyotypes, heterochromatin distribution and fluorochrome staining 

All analyzed specimens of I. monticola showed a karyotype composed of 2n=36 acrocentric 

chromosomes of gradually decreasing size (Fig. 2).  

Fig. 2. C-banded karyotypes of I. 

monticola male (a) and female (b) 

from the population of Eume. In 

the inset, sex chromosome pairs 

ZZ and ZW. Scale bars represent 

5 μm. 

C-banding evidenced constitutive heterochromatin at the centromeres of all chromosomes, 

and interstitially at the pericentromeric regions of the ten larger chromosome pairs (Figs. 3 and 
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4). These conspicuous heterochromatic blocks were uniformly stained with both DAPI and 

CMA3 and hence they do not seem to contain particularly AT- or GC- rich repetitive DNA 

families (Figs. 3c-f and 4). Faint C-positive bands were also found at the ends of several 

chromosome pairs (tentatively, in the twelve larger chromosome pairs) and resulted only 

positively stained by CMA3, indicating that this telomeric heterochromatin was composed of 

GC-rich sequences. In addition, CMA3 staining produced an intense fluorescent signal in the 

subterminal region of a large chromosome pair, probably correlated with NORs-associated 

heterochromatin (Figs. 3e, f and 4c, d). 
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Fig. 3. Metaphase plates of I. monticola male (a, c, e) and female from Eume (b, d, f) C-

banded and stained with Giemsa (a, b), DAPI (c, d) and CMA3 (e, f). Asterisks in e and f 

indicate CMA3 positive signals associated with NORs. Empty and filled arrows point to Z 

and W sex chromosomes, respectively. Scale bars represent 10 μm. 

  



  
Verónica Rojo Orons 

 
 

62 

The differences in the pattern of heterochromatin distribution between sexes clearly 

revealed the presence of a cytologically differentiated ZW sex chromosome pair. The W 

chromosome was easily recognizable in female metaphases, being one of the smallest 

chromosomes of the karyotype (Fig. 2b) and almost completely heterochromatic, with only a 

small euchromatic region located in an interstitial position (Fig. 3b). The heterochromatin of 

the W chromosome was intensely stained with both DAPI and CMA3 (Figs. 3d, f and 4b, d). 

C-banding also allowed the identification of the Z chromosome, present in two copies in males 

and in single copy in females. This element was as large as the chromosomes of the 9th or 

10th pair and differed only slightly from the autosomes in bearing a brighter, CMA3-positive, 

telomeric C-band (Figs. 2a, 3e and 4c). 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Metaphase plates of I. monticola male (a, c) and female from Puerto de 

Vegarada (b, d) C-banded and stained with DAPI (a, b) and CMA3 (c, d). Asterisks in 

c and d indicate CMA3 positive signals associated with NORs. Empty and solid 

arrows point to Z and W sex chromosomes, respectively. Scale bars represent 10 μm. 

*
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Fig. 5. Chromosomal localization of the 18S-5.8S-28S rRNA genes and (TTAGGG)n 

telomeric sequences in male (a, c, e) and female (b, d, f) I. monticola. (a, b) Ag-NOR 

bands and (c, d) FISH signals of the 18S-5.8S-28S rRNA genes (arrows). (e, f) 

Hybridization patterns of the telomeric probe (TTAGGG)n. Arrows point to interstitial 

telomeric sites. Scale bars represent 10 μm. 



Verónica Rojo Orons 

64 

Chromosomal mapping of the 18S-5.8S-28S rRNA genes 

Ag-NOR banding agreed with CMA3 evidence and showed active NORs on the secondary 

constriction in the subtelomeric regions of chromosome pair 6 (Figs. 2 and 5a, b).  

Fluorescent hybridization signals of the 18S-5.8S-28S rRNA genes were also coincident 

with Ag-NOR bands and did not reveal more inactive loci (Figs. 5c, d).  

Chromosomal location of the (TTAGGG)n sites 
FISH with a telomeric probe (TTAGGG)n produced discrete fluorescent signals at the 

telomeres of all chromosomes (Fig. 5e, f). Additionally, bright hybridization signals were 

detected at interstitial sites (so called Interstitial Telomeric Sites, ITSs) in five large 

chromosome pairs in all the metaphase spreads examined. None of these ITSs were located on 

either the sex chromosomes or the NOR-bearing pairs. 

Comparative genomic hybridization (CGH) 

CGH highlighted a strong hybridization signal of the female-derived genomic probe on a 

single small chromosome in female metaphase spreads (Figs. 6a, b), but not in male 

metaphases (Figs. 6c, d), as would be expected for the W chromosome. This signal was 

predominantly located in the distal portion of the W chromosome, indicating that this 

chromosomal region is enriched in female-specific sequences (Fig. 6b). The Z chromosome 

could not be distinguished from the autosomes by CGH. 

The centromeric and interstitial heterochromatin blocks were labeled evenly with both male 

and female-derived probes (yellow fluorescence) (Figs. 6b, d). 
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a b

c d

Fig. 6. Comparative genomic hybridization on female (a, b) and male (c, d) 

metaphases of I. monticola. Male genomic DNA is stained with FITC (green) and 

female genomic DNA with TRITC (red). (a, b) DAPI-stained metaphases; (c, d) 

Merged images. Arrow in b points to the W chromosome. 

Discussion 

Chromosome number and karyotypes 
In accordance with previously published results (Odierna et al. 1996), the karyotypes obtained 

from males and females of I. monticola showed a diploid chromosome complement of 2n=36 

acrocentric elements, which is common to all the species assigned to the “Iberian group” of 

the genus Iberolacerta, namely I. galani, I. martinezricai, I. cyreni and the said I. monticola. 

In contrast with chromosome morphology, the pattern of heterochromatin distribution is not 

so conservative between these taxa (Odierna et al. 1996), and each species displays its own 

heterochromatin profile. In general, all the Iberolacerta species—with the only exception of I. 

bonnali—show prominent C-bands at the centromeres of almost all the acrocentric 

chromosome pairs. The presence of centromeric heterochromatin is a widespread character in 
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lacertids (Olmo et al. 1986, 1993; Odierna et al. 1996), and it has been suggested that it may 

play a role in centromere structure and function (e.g., Capriglione et al. 1998). 

However, the composition of the highly repetitive DNA sequences that constitute this 

centromeric heterochromatin is not necessarily conserved between the different Iberolacerta 

species, as indicated by the fact that these DAPI-positive C-bands are also brightly stained by 

CMA3 in I. monticola and I. galani (Arribas et al. 2006), but are CMA3-negative in I. 

martinezricai (Arribas and Odierna 2005). 

Moreover, the C-banding technique revealed the presence of additional DAPI and CMA3-

positive heterochromatin in the pericentromeric regions of the 10 larger chromosome pairs. 

These interstitial heterochromatic regions have not been previously detected by C-banding in 

any of the Iberolacerta species, although they are probably correlated with the pericentromeric 

bands generated on the six larger chromosome pairs of I. monticola after the digestion of 

heterochromatin with the endonuclease AluI (Odierna et al. 1996). This AluI banding pattern 

shows the variation in sequence composition between the AluI-sensitive heterochromatin 

located at the centromeres and the pericentromeric AluI-resistant heterochromatin present at 

least on six chromosome pairs. 

Even though satellite DNAs in constitutive heterochromatin are usually composed of AT-

rich elements (e.g., King and Cummings 1997; Plohl et al. 2008), the faint C-bands revealed at 

the telomeres in the 12 larger chromosome pairs of I. monticola were only visible after CMA3 

staining and, therefore, a high GC content can be postulated. GC-rich satellites have been 

reported for some animal species (Meneveri et al. 1995; Malykh et al. 2001; Barragán et al. 

2002; Petrović et al. 2009) and, in Squamate reptiles, a telomeric GC-rich satellite has been 

described for the skink Eumeces schneideri (Giovannoti et al. 2009b). The 

compartmentalization of GC-rich elements in telomeric heterochromatin could be related to 

the hypothesized role of short guanine stretches in telomere maintenance and stability 

(Muniyappa et al. 2000), as well as in promoting chromosome rearrangements through 

recombination between satellite and telomeric sequences (e.g., Hartmann and Scherthan 

2004). 

The presence of telomeric heterochromatin blocks in some chromosome pairs of I. 

monticola and in all chromosomes of I. galani (Arribas et al. 2006) constitutes a cytogenetic 

marker that further discriminates the karyotypes of both species from I. martinezricai, where 

all chromosomes are devoid of telomeric C-bands (Arribas and Odierna 2005). 
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On the whole, C-banding data gathered so far in the genus Iberolacerta reveal extensive 

heterogeneity in the amount and distribution of the heterochromatic fraction, even between 

species so closely related as I. martinezricai, I. monticola and I. galani. However, the 

karyological affinities unveiled between I. monticola and I. galani are not consistent with 

molecular data (Arribas et al. 2006; Remón et al. 2013), which indicate that I. monticola is the 

sister taxon to the clade formed by I. galani and I. martinezricai (Fig. S1, Supplementary 

Material). In light of the phylogeny, it seems likely that the C-banding patterns of I. monticola 

and I. galani represent the ancestral condition for this lineage; thus the particular differences in 

heterochromatin distribution and composition reported for I. martinezricai constitute a derived 

character that, similarly to other cytogenetic traits (e.g., NOR location, see below) or 

osteological autapomorphies distinctive of this taxon (Arribas and Odierna 2005), could have 

become fixed after the species divergence, due to random genetic drift in small populations. In 

conclusion, our findings support the idea that, even if C-banding patterns in lacertid lizards 

can be useful to identify species diagnostic characters, they may not accurately reflect the 

phylogenetic relationships among taxa (Olmo et al. 1986).  

 

Ribosomal loci 
As previously reported in I. monticola (Odierna et al. 1996), silver-staining documented a 

single NOR site in a subtelomeric position of chromosome pair 6. Such NOR location at the 

telomeres of a large chromosome pair (L-type after Olmo et al. 1993) appears to be ubiquitous 

among lacertids (Olmo et al. 1993), and it is also the plesiomorphic condition for the genus 

Iberolacerta, where only I. cyreni and I. martinezricai differ in showing a NOR in an 

interstitial position on a medium-sized chromosome pair (M-type after Olmo et al. 1993) 

(Odierna et al. 1996; Arribas and Odierna 2005). 

FISH with the 28S-5.8S-18S rDNA probe, carried out for the first time in this genus, 

confirmed the presence of the ribosomal clusters at the sites identified by silver-staining, and 

did not show additional transcriptionally inactive loci. In addition, the bright CMA3 signal 

associated with the NOR site highlighted the GC richness in rDNA base composition, as 

reported for a wide variety of organisms (e.g., Sumner 1990 and references therein).  

Telomeric repeats 

Hybridization signals of the (TTAGGG)n probe were located at the telomeres of all 

chromosomes and at interstitial positions on five large chromosome pairs.  
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ITSs have been observed in many vertebrate species (e.g., Meyne et al. 1990; Lee et al. 

1993; Nanda and Schmid 1994; Garagna et al. 1997; Ventura et al. 2006), including several 

families of Squamate reptiles (Meyne et al. 1990; Schmid et al. 1994; Pellegrino et al. 1999; 

Bertolotto et al. 2001; Srikulnath et al. 2009). They usually consist of large arrays of 

telomeric-like repeats commonly located in pericentromeric regions, within or at the margins 

of constitutive heterochromatin. 

A large body of evidence indicates that ITSs may be remnants of chromosomal 

rearrangements that occurred during chromosome evolution (for a review, see Lin and Yan 

2008; Ruiz-Herrera et al. 2008). Likewise, the ITSs detected in I. monticola could be the result 

of chromosome reorganization events, such as tandem fusions of ancestral acrocentric 

chromosomes, paracentric inversions involving the telomeric sequences or pericentric 

inversions in ancestral sub-/metacentric chromosomes. The high intensity of the ITS signals, 

generally larger than those detected at the telomeric ends, suggests that the retained 

(TTAGGG)n sequences have also been amplified. In this regard, it is interesting to point out 

that karyotype evolution in lacertids is thought to be characterized by a progressive 

translocation of microchromosomes to macrochromosomes (Olmo 1986; Odierna et al. 1987). 

In fact, the basic diploid number of Iberolacerta (2n=36) differs from the common lacertid 

karyotype in that it lacks a pair of microchromosomes (Olmo et al. 1993). Moreover, ITSs 

have been associated with fragile sites and recombination hotspots (recently reviewed in 

Bolzán 2012) that may confer greater flexibility for karyotype change by providing potential 

new sites for telomere formation (Meyne et al. 1990). 

However, the presence of ITSs in the karyotype is not always related to structural 

chromosome changes. Pre-existing ITSs, including the short stretches of telomeric hexamers 

that are presumably inserted during the repair of double strand breaks (Nergadze et al. 2004, 

2007), could be subsequently spread and expanded at different intrachromosomal regions by 

common mechanisms of repetitive DNA amplification, such as unequal crossing-over or 

sequence conversion (Wiley et al. 1992; Vermeesch et al. 1996; Garagna et al. 1997; Nanda et 

al. 2008). For instance, a process of heterochromatin association and unequal exchange has 

been proposed to explain the dispersion and amplification of ITSs embedded within 

heterochromatin to new chromosomal locations in lemur and rodent species (Go et al. 2000; 

Rovatsos et al. 2011).  

Therefore, further studies of the occurrence of ITSs and comparative karyological analyses, 
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such as chromosome painting, between lacertids and closely related lizard families are 

required to elucidate the origin of these non-telomeric sites and clarify their association with 

karyotype evolution in this lineage.  

 

Sex chromosomes 
Populations of I. monticola from the locality of Puerto de Vegarada, in the Cantabrian 

mountain range, were first reported to lack differentiated sex chromosomes (Odierna et al. 

1996). In the present study, however, a heteromorphic ZW chromosome pair was consistently 

identified in the female specimen analyzed from this same population. The discrepancy 

between those observations and our results could be just due to experimental artifacts. For 

instance, the higher degree of chromosome condensation in metaphase spreads obtained by 

scraping techniques from tissues (former work) in comparison with chromosomes obtained 

from cell cultures (present study) could hamper the detection of the small-sized W 

chromosome by C-banding.  

The presence of a cytologically distinguishable ZZ/ZW system was also confirmed in 

specimens from two other Cantabrian populations, as well as from the population of Eume, at 

the northwesternmost edge of the species’ range. All four studied populations are currently 

isolated and, according to recent molecular analysis (Remón et al. 2013), their independent 

evolution began roughly between 1.5 and 0.9 mya, possibly as a consequence of climatic 

fluctuations during the Pleistocene. Even so, the sex chromosome pairs of any of these 

populations are highly similar in terms of relative size and in the amount and distribution of 

heterochromatin, albeit they could exhibit some differentiation at finer scales hardly evidenced 

by C-banding and fluorochrome staining.  

Likewise, the sex chromosome pair detected in I. monticola closely resembles that of other 

Iberolacerta species for which sex chromosomes have been described, i.e., I. horvathi, I. 

cyreni and I. galani (Capula et al. 1989; Odierna et al. 1996; Arribas et al. 2006). All of them 

possess a highly heteromorphic ZW pair, in which the W chromosome is smaller than the Z 

and completely or almost completely heterochromatic. Nevertheless, greater similarities are 

found between I. monticola and I. galani. In particular, the presence of a bright telomeric 

heterochromatic block in the Z chromosome is a feature that appears to be exclusive of both 

species. Even if the nature of the sequences responsible for the heteromorphism in the sex 

chromosome pair is not known, reverse fluorochrome staining revealed at least certain 

differences in molecular composition, since heterochromatin in the Z chromosome resulted 
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only positive after CMA3 staining (similarly to the weak C-bands at the ends of some 

autosomal pairs), while W chromosome heterochromatin was completely stained with both 

CMA3 and DAPI. Accordingly, CGH results confirmed that the Z and W chromosomes are 

highly differentiated in sequence content, probably owing to extensive accumulation of 

female-specific repetitive sequences in the distal region of the W chromosome. 

In general, the properties of sex chromosomes in I. monticola and the remaining 

Iberolacerta species are concordant with the evolutionary model proposed for other lacertids 

(Olmo et al. 1987; Odierna et al. 1993), which suggests that the accumulation of repetitive 

sequences and heterochromatinization is an early change that initiates sex chromosome 

differentiation. This may subsequently be followed by structural rearrangements, such as 

deletion of heterochromatic regions not involved in sex determination, originating a 

heteromorphic sex chromosome pair in which the W is distinctly smaller than the Z. In this 

context, it would be of interest to verify whether the W chromosome of I. galani, reported to 

be totally imbibed with heterochromatin (Arribas et al. 2006), certainly lacks the intercalary 

euchromatic region observed in the W chromosome of I. monticola and thus represents a more 

advanced stage of sex chromosome differentiation. 

Despite the common features of the ZW pair of these Iberolacerta species, it is likely that 

not all the sex chromosome systems in this genus followed the same evolutionary pathway: 

multiple sex chromosomes systems (Z1Z1Z2Z2 male and Z1Z2W female), with W chromosomes 

at different degrees of heterochromatinization, have been found in I. bonnali and I. aurelioi 

(Odierna et al. 1996). In addition, homomorphic and cytologically undetectable sex 

chromosomes are presumably present in I. aranica and I. martinezricai (Odierna et al. 1996; 

Arribas and Odierna 2005) (Fig. S1, Supplementary Material). Moreover, variation in the 

degree of sex chromosome differentiation is found among species that diverged no more than 

2.5 mya (I. monticola, I. galani and I. martinezricai). 

Such interspecific variability in the stage of degeneration of W chromosomes, with no clear 

phylogenetic correlation, is representative of the remarkable heterogeneity of sex chromosome 

systems reported for lacertid lizards (Olmo et al. 1986, 1987; Odierna et al. 1993; Olmo and 

Signorino 2005), which suggests that in this family, as in many reptile lineages, sex 

chromosomes can have multiple independent origins even in closely related taxa (e.g., Ezaz et 

al. 2009).  

Thus, considering that degradation of W chromosome and dosage compensation would 
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evolve more slowly in ZW taxa, as compared with XY taxa (Naurin et al. 2010), and bearing 

in mind the advanced state of degeneration of the W chromosome in the basal Iberolacerta 

species, I. horvathi (Capula et al. 1989), it seems probable that the presence of a 

heteromorphic ZZ/ZW pair is the ancestral condition for this genus. Accordingly, it could be 

hypothesized that the seemingly undifferentiated sex chromosomes in I. martinezricai and I. 

aranica might represent neo-sex chromosomes resulting from recent turnover events (e.g., the 

appearance of a new sex determining gene on an autosome or the transposition of a sex 

determining gene to a new chromosomal location), which would have replaced the pre-

existing heteromorphic ZW pair. Nonetheless, the putative absence of heteromorphic sex 

chromosomes in both species should be further investigated in detail.  

Future comparative cytogenetic analyses, along with the application of high-resolution 

molecular cytogenetic techniques such as CGH, will therefore be necessary to deepen the 

knowledge about the degree and patterns of sex chromosome differentiation and the transitions 

between simple ZW and multiple Z1Z2W systems in the genus Iberolacerta, which ultimately 

would shed light on the mechanisms underlying sex chromosome evolution and the plasticity 

of sex determination systems in lacertid lizards.  
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Supplementary Material 

Fig. S1. Cladogram of the genus Iberolacerta based on the molecular phylogeny reported 

by Arribas et al. (2014), with information on chromosome numbers and sex 

chromosome systems. Estimated divergence times in millions of years (myr) are indicated 

at each node. Cytogenetic data for the outgroup species, Dinarolacerta mosorensis, were 

obtained from Capula et al. (1991) and Odierna and Arribas (2005). M, male; F, female. 



  
Chapter I  

 

79 

 

 



 



CHAPTER II 

Comparative chromosome painting in lacertid lizards: 

highly conserved karyotypes but independent origins of sex 

chromosomes?
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Abstract 

Lizards of the family Lacertidae exhibit remarkable diversity in the degree of sex chromosome 

differentiation, even between closely related taxa. However, comparative data on lacertid sex 

chromosomes are scarce, and have been mainly gathered using standard banding techniques. 

Here, we applied high-resolution molecular cytogenetic techniques [chromosome painting and 

comparative genomic hybridization (CGH)] to evaluate the homology between the sex 

chromosomes of five lacertid species, namely Iberolacerta monticola, I. galani, I. bonnali, 

Lacerta schreiberi, and Timon lepidus. Chromosome painting with the probe derived from the 

W chromosome of I. monticola (IMOW) showed that the euchromatic region of the female-

specific sex chromosome is conserved in the other two species of Iberolacerta. The biarmed 

W chromosome of I. bonnali originated from a centric fusion involving I. monticola 

chromosome 15 or 16. Conversely, the W chromosomes of I. monticola, T. lepidus and L. 

schreiberi are highly differentiated from each other, and probably evolved independently 

through rapid accumulation of female-specific sequences characteristic of each lineage. 

Moreover, our preliminary data with a Z chromosome paint suggest at least two independent 

origins of sex chromosomes in lacertids. A genome-wide comparison of chromosome synteny 

between these three species revealed a high degree of karyotype conservation but some 

characteristic rearrangements, including a translocation of microchromosomes to 

macrochromosomes in Iberolacerta. Finally, we carried out PCR-assisted gene mapping on 

flow-sorted chromosome libraries of I. monticola to investigate chromosome homology with 

other reptilian species. Although inconclusive, the results of this approach support lack of 

homology between the sex chromosomes of lacertids and A. carolinensis, and suggest that the 

loss of microchromosomes in Lacertidae was due to repeated fusions between 

microchromosomes that existed in the ancestral karyotype of squamate reptiles. 

Key Words: Lacertids · Chromosome painting · Karyotype evolution · Sex 

chromosomes · Chromosome synteny 
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Introduction 

The evolution of sex determination in squamate reptiles has attracted much interest over the 

past years, since this group exhibits an astonishing diversity of sex-determining systems, 

which range from environmental sex determination to genotypic sex determination, including 

male heterogamety (XX/XY), female heterogamety (ZZ/ZW) and multiple sex chromosomes 

(Sarre et al. 2004; Ezaz et al. 2009a; Pokorná and Kratochvíl 2009). Lack of clear 

phylogenetic segregation of sex- determining mechanisms suggests multiple transitions 

between systems and independent origins of sex chromosomes in many squamate lineages 

(Ezaz et al. 2009a; Sarre et al. 2011). 

However, well-supported variability in the mode of sex determination has been documented 

so far only in dragon lizards (Agamidae) (Ezaz et al. 2009b) and geckos (Gekkota) (Gamble 

2010; Pokorná et al. 2010, 2014; Koubová et al. 2014; Gamble et al. 2015). On the other hand, 

phylogenetic reconstruction of the evolution of sex determination has shown that other 

squamate clades might posses relatively conserved systems and sex chromosomes (Pokorná 

and Kratochvíl 2009). Indeed, molecular-cytogenetic studies confirming such conservation of 

sex chromosomes have been recently published for colubroid snakes (Matsubara et al. 2006; 

Vicoso et al. 2013) and iguanas (Gamble et al. 2014; Rovatsos et al. 2014a, b). 

Nonetheless, the portrait of the evolution of sex determination is largely incomplete, and 

information on the sex-determining mechanisms and sex chromosomes is still lacking for 

many phylogenetically important groups (e.g., Pokorná and Kratochvíl 2009). In addition, 

chromosome homology has been traditionally established using standard banding and staining 

techniques, which may actually undercount the real number of transitions among sex-

determining systems. For instance, recent work using chromosome painting revealed that the 

morphologically similar ZW sex chromosomes of two gecko species are not homologous and 

represent independent origins of female heterogamety within the Gekkonidae (Matsubara et al. 

2014). Molecular cytogenetic analyses evaluating the homology of sex chromosomes at the 

sequence level are thus required to investigate the evolutionary transitions of sex 

chromosomes within and among multiple squamate lineages. 

One of these lineages is the Old World Lizard family Lacertidae. With about 321 species in 

42 genera (Uetz and Hošek 2015), it is the predominant lizard group in Europe and a 

substantial component of the squamate reptile diversity in Africa (Arnold et al. 2007; Hipsley 

et al. 2009). Genetic analyses suggest a fast diversification and radiation of lacertids (Harris et 

al. 1998; Fu 2000; Arnold et al. 2007), even though divergence time estimates for these events 

are controversial, with some authors indicating the mid-Miocene (12-16 My ago) (Arnold et al. 
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2007; Pavlicev and Mayer 2009) and other the mid-Eocene (43-46 My ago) (Hipsley et al. 

2009). Perhaps due to this rapid diversification, lacertids are characterized by the presence of 

relatively conserved karyotypes. Most species possess a diplod number of 2n=38, with 36 

acrocentric macrochromosomes and 2 microchromosomes (Gorman 1973; Olmo et al. 1986; 

Olmo and Signorino 2005). As previously reported in Chapter I, there are some exceptions to 

this pattern. For instance, the karyotypes of some species of the genus Iberolacerta consist of 

36 acrocentric macrochromosomes and no microchromosomes. Greater differences are found 

in the Pyrenean Iberolacerta, with reduced diplod numbers that range from 2n=24 to 26 in 

males and from 23 to 26 in females (Gaetano Odierna et al. 1996) and numerous biarmed 

chromosomes. 

The phylogenetic distribution of species with known sex chromosomes suggests that female 

heterogamety is ancestral for the family (Pokorná and Kratochvíl 2009). ZW or ZW-derived 

sex chromosomes have been described so far for approximately 40% (43 species) of the 104 

species karyotyped (Olmo and Signorino 2005; Ezaz et al. 2009). Cytogenetic analyses, 

mainly accomplished through Giemsa staining, C-banding and G-banding (Olmo et al. 1986; 

Olmo et al. 1987; Odierna et al. 1993) revealed extensive variability in morphology and in the 

degree of W chromosome differentiation, which includes at least the following situations: (1) 

sex chromosomes that are homomorphic and completely euchromatic (e.g., Podarcis tiliguerta 

and P. wagleriana); (2) homomorphic sex chromosomes in which the Z is euchromatic and the 

W is heterochromatic (e.g., Takydromus sexlineatus or Eremias velox) ; (3) heteromorphic sex 

chromosomes in which the W is heterochromatic and distinctly smaller than the Z (e.g., 

Eremias arguta or Lacerta graeca) (Ivanov and Fedorova 1973; Olmo et al. 1986, 1987; 

Odierna et al. 1993; Pokorná et al. 2011). Based on these observations, it has been proposed 

that the main evolutionary pathway of lacertid sex chromosomes involves 

heterochromatinization followed by progressive deletion of the heterochromatic areas (Olmo 

et al. 1987; Odierna et al. 1993). Moreover, variability in the extent of sex chromosome 

differentiation has been found not only among closely related species, but also among 

populations of the same species (see, for example, Odierna et al. 2001; Bosch et al. 2003), 

which suggests that sex chromosome differentiation in this family took place repeatedly and 

independently in the different taxa (Odierna et al. 1993). To our knowledge, molecular 

cytogenetic techniques have been only applied recently to characterize the sex chromosomes 

of Iberolacerta monticola (this thesis) and Lacerta agilis (Srikulnath et al. 2014), but they are 

a valuable tool to investigate the evolution of lacertid sex chromosomes. 
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Here, we describe the preparation of flow-sorted chromosome paints from the Iberian Rock 

lizard I. monticola, and their subsequent use in cross-species chromosome painting to carry out 

a comparative analyses of sex chromosomes between the following lacertid species: the 

congeneric I. galani (2n = 36), with ZW sex chromosomes (Arribas et al. 2006); I. bonnali (2n 

= 24 in males, 2n =23 in females), with a multiple Z1Z2W chromosome system (Odierna et al. 

1996); Lacerta schreiberi (2n = 38), for which no sex chromosomes have been described yet 

(Mateo and Cano 1991); and Timon lepidus (2n = 36), with a W sex microchromosome (De 

Smet 1981; Olmo et al. 1987). Comparison of sex chromosomes at the molecular level was 

further extended through comparative genomic hybridization (CGH) between I. monticola, L. 

schreiberi and T. lepidus. In addition, the whole set of I. monticola chromosome paints was 

used in genome-wide comparisons with the chromosomal complements of L. schreiberi and T. 

lepidus, in order to detect chromosomal rearrangement and syntenies between the three 

different genera. 

Finally, we also used the flow-sorted chromosomes of I. monticola to investigate 

chromosomal homology at a broader taxonomic scale, in comparison with the genome map of 

the green anole, Anolis carolinensis (Iguania) (Alföldi et al. 2011). This species possess a 

chromosome number of 2n=36, which is widely distributed among squamate reptiles (Gorman 

1973; Alföldi et al. 2011; Young et al. 2013). However, this putative ancestral karyotype 

consists of 12 large metacentric chromosomes and 24 microchromosomes and, hence, differs 

markedly from the typical lacertid karyotype. Despite considerable chromosomal variation, 

comparative genome studies through gene mapping, chromosome painting and in silico 

analysis of genome assemblies revealed extensive chromosomal synteny among the members 

of Aves, Testudines, Crocodylia and Squamata (Matsuda et al. 2005; Matsubara et al. 2006, 

2012; Srikulnath et al. 2009, 2013; Alföldi et al. 2011; Pokorná et al. 2011, 2012; Uno et al. 

2012; Young et al. 2013) after 275 millions years of divergence (Shedlock and Edwards 2009). 

Based on these observations, it can be speculated that the chromosomes of I. monticola will be 

largely syntenic with chromosomes of A. carolinensis, and that the acrocentric elements in the 

lacertid karyotype derived from the common karyotype of squamates by frequent fissions of 

the metacentric macrochromosomes and fusions of the microchromomes. To test this 

hypothesis, we used information from the draft genome assembly of A. carolinensis (Alföldi et 

al. 2011) to select at least one gene anchored to each chromosomal arm of the metacentric 

chromosomes and to each microchromosome. The location of the target genes on the 

chromosomes of I. monticola was then examined by PCR-assisted mapping on the flow-sorted 

chromosome libraries. Interestingly, a cytogenetic map of the sand lizard (Lacerta agilis, 
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Lacertidae), has been recently published before completion of this work (Srikulnath et al. 

2014). This data offer and excellent framework to check the results of gene mapping retrieved 

by a different experimental approach, and to obtain a more complete view of karyotype 

evolution between lacertids and other reptilian lineages. 

 

Material and Methods 

Animals 

Two adult females and one adult male of I. monticola were collected from the population of 

the fluvial valley of the river Eume (A Coruña, Spain). The tail tips of one adult female of L. 

schreiberi and T. lepidus were collected from the Natural Park Montes do Invernadeiro 

(Ourense, Spain). In addition, two adult females of I. galani and the tail tip of one adult female 

of I. bonnali were collected from the localities of A Ponte, Pena Trevinca (Ourense, Spain) and 

Pico de Urdiceto, Pirineos (Huesca, Spain), respectively. The sex of each animal was 

determined by examination of sexually dimorphic external morphology. All these samples 

were used to make metaphase chromosomes. Permissions for fielwork and ethics approval of 

experimental procedures were issued by the competent authorities (Xunta de Galicia, Junta de 

Castilla-León and Gobierno de Aragón, in Spain), in accordance with the Spanish legislation 

(Royal Decree 1201/2005 and Law 32/2007, on the protection of animals used for 

experimentation and other scientific purposes). 

 

Metaphase chromosome preparation 

The tail tip collected from each specimen (approximately 10 mm) was pre-treated before 

setting up the cell cultures as described in Ezaz et al. (2008), with slight modifications. Briefly, 

the surfaces of the tail tips were sterilized by wiping with gauze soaked in 70% ethanol, 

clipped and incubated at 30ºC for 24 h in Collection Medium [RPMI 1640 Medium containing 

25 mM HEPES (Sigma) with 1 mg/mL kanamycin (Sigma) and 1% antibiotic-antimycotic 

(Life Technologies-Gibco)]. 

Fibroblast cell lines and metaphase chromosome spreads were prepared following the 

protocol described in Chapter I. Cultures for flow-sorting were split up to 4 passages before 

the chromosomes were harvested. 

Probe preparation 

Chromosome paints from a female I. monticola were prepared from chromosomes sorted 

with a dual laser cell sorter (Mo-Flo, Dako) at the Cambridge Resource Centre for 
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Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, 

Cambridge, UK, as previously described (Yang et al. 1995). Sorted chromosomes were used as 

templates for DNA amplification by DOP-PCR (Telenius et al. 1992). Primary DOP-PCR 

products were used as templates in a secondary DOP-PCR to incorporate biotin-16-dUTP 

(Roche). 

 

Karyotyping and C-banding 

For karyotypying, the slides were stained with DAPI (1.5 μg/mL) in anti-fade medium 

Vectashield (Vector Laboratories). C-banding and sequential staning with DAPI and CMA3 

was performed as described in Chapter I. 

 

Fluorescence in situ hybridization and signal detection 

The chromosome content and purity of flow-sorted fractions was first determined by 

fluorescence in situ hybridization (FISH) onto metaphase spreads of female I. monticola. 

Unidirectional chromosome painting with the probe containing the W sex chromosome of I. 

monticola was performed on I. galani, I. bonnali, L. schreiberi and T. lepidus. The full set of 

chromosome-specific probes of I. monticola was used in cross-species hybridization to 

metaphase spreads of I. bonnali, L. schreiberi and T. lepidus. 

FISH was performed using the protocols described in Yang et al. (1995) and Rens et al. 

(2006) with several modifications. Briefly, slides were dehydrated through ethanol series; aged 

at 65°C for 1 h; denatured in 70% formamide/2x saline-sodium citrate (SSC) at 70°C for 1 up 

to 3 min (time depending on species and metaphase preparation) and dehydrated again. One 

microlitre of biotinylated probe was made up to 12 μL with hybridization buffer (50% 

deionized formamide (v/v), 10% dextran sulfate, 2x SSC, 0.05 M phosphate buffer, pH 7.3). 

This mixture was denatured at 75°C for 10 min, preannealed at 37°C for 30 min and applied to 

each slide. Hybridization was carried out at 37 °C overnight, for the same species, and over 

48h and 72h, for congeneric and more distantly related species, respectively. Posthybridization 

washes were performed in 50% formamide/2x SSC twice for 5 min each, followed by 2x SSC 

twice for 5 min each and 4x SSC with 0.05% Tween-20 (4xT) once for 4 min. Washes were 

carried out at 42 °C. Probe detection was performed using 200 μL of diluted (1:500) Cy3-

Streptavidin antibody (Amersham) per slide at 37°C for 30 min. After detection, slides were 

washed in 4xT three times for 3 min each at 42°C and mounted in with anti-fade medium 

Vectashield (Vector Laboratories) containing 1.5 μg/mL DAPI. 
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Interspecies comparative genomic hybridization (iCGH) 

Total genomic DNA was extracted from ethanol preserved tissues of I. monticola, L. schreiberi 

and T. lepidus females using a commercial kit (RealPure Genomic DNA Extraction Kit, 

Durviz), following the manufacturer's instructions. Total genomic DNA was labeled by 

random priming with the Prime-It Random Priming Labeling Kit (Agilent Technologies), 

according to the manufacturer's specifications. Genomic DNA of I. monticola and T. lepidus 

was labeled with TRITC-dUTP, while genomic DNA of L. schreiberi and T. lepidus was 

labeled with FITC-dUTP. 

iCGH was performed as described in Chapter I. Reciprocal iCGH experiments were done 

between each pair of species. For each slide that was made, 250 ng of TRITC-labeled and 250 

ng of FITC-labeled DNA were ethanol-precipitated with 20 μg of glycogen and 4 μg of 

unlabeled, sheared genomic DNA (as competitor) derived from a male of the same species as 

the target metaphases. In situ hybridization was performed as described in Chapter I. 

Microscopy and data analyses 

Images were captured using the epifluorescence microscopes Leica DMRXA and Nikon 

Microphot-FXA, equipped with cooled CCD cameras [Photometrics Sensys and DS-Qi1Mc 

(Nikon Instruments), respectively]. The Leica CW4000 FISH and the NIS-Elements D 3.10 

(Nikon Instruments) softwares were used to capture 16-bit grey-scale images of DAPI, 

Cy3/TRITC and FITC signals, which were then normalized and merged to a 24-bit colour 

image. For karyotyping, the DAPI images were displayed in contrast-adjusted reversed 

greyscale images. The final composition of the images was performed with Adobe Photoshop 

CS4 11.0.1 (Adobe Systems Inc.). 

PCR-assisted gene mapping 

Chromosome-specific DNA from flow-sorted chromosomes of I. monticola was used as 

template for PCR mapping of Anolis carolinensis genes using conserved gene-specific primers. 

Primers designed by Brunner et al. (2001) and Pokorná et al. (2011) were used to amplify the 

conserved B region of DMRT1 gene and a region of ATP5A1 gene, respectively. Primers for 

amplification of all the other genes were newly designed according to A. carolinensis DNA 

sequence available as AnoCar2.0 assembly (the Ensembl Anole Lizard Genome Browser, 

http://www.ensembl.org/Anolis_carolinensis). Genomic regions of A. carolinensis comprising 

genes of interested were aligned in Muscle (Edgar 2004) with the orthologous regions of G. 
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gallus (the Ensembl Chicken Genome Browser, http://www.ensembl.org/Gallus_gallus), 

Pelodiscus sinensis (the Ensembl Chinese Softshell Turtle Genome Browser 

http://www.ensembl.org/Pelodiscus_sinensis) and, when available, sequences of other 

squamate species (Lacerta agilis, Leiolepis reevesii rubritaeniata, G. hokouensis, Python 

bivittatus and Alligator mississippiensis) retrieved from the NCBI GenBank database 

(http://www.ncbi.nlm.nih.gov/genbank/). Degenerate primers were designed with Primaclade 

(Gadberry et al. 2005). Once forward and reverse PCR primers were successfully designed, a 

BLAST search (BLASTn) for the primer sequences was performed against the A. carolinensis 

genome sequence, and the results were checked to ensure that there were no homologous 

regions in the genomes, except for the primer sequences themselves (E-value <0.1). 

Primer sequences, annealing temperatures and DDBJ/EMBL/GenBank or Ensembl 

accession numbers of the sequences used for primer design are listed in Table S1a 

(Supplementary Material). Each PCR reaction was conducted in a final volume of 25 μL and 

contained ~25 ng of genomic DNA, 1x NZYTaq Green Master Mix (NZYTech) including 2.5 

mM MgCl2, 0.5 μM of each primer and 400 ng/μL bovine serum albumin (Sigma). The 

general reaction conditions were as follows: initial denaturation at 94ºC for 5 min; 35 cycles of 

denaturation at 94ºC for 30 s, annealing at the corresponding temperature (see Table 1a) for 30 

s, extension at 72ºC for 30-60 s; and a final extension at 72ºC for 7 min. A sample of genomic 

DNA of I. monticola was also tested for each primer pair, as positive control. The obtained 

PCR products were run on 2% agarose gels, stained with Real Safe (Real) and imaged under 

UV light. PCR products with the expected size and single-band patterns were directly 

sequenced. Bidirectional sequencing with the PCR primers was performed on an ABI PRISM 

3730XL (Applied Biosystems) automatic sequencer. When the PCR product had more than 

one band, amplicons of interest were excised from the agarose gel and eluted using Pure Link 

Quick Gel Extraction Kit (Invitrogen). 

Some PCRs yielded a product of expected size on the sample of genomic DNA, but not on 

chromosome templates. In those cases, sequences obtained from genomic DNA were used to 

design specific internal primers (Table S1b, Supplementary Material), which were then 

employed in PCR-assisted gene mapping as described above. 

 

Results 

Karyotyping and C-banding 

DAPI-stained karyotypes of all the analyzed species are shown in Fig. 1. The karyotypes of I. 

monticola and I. galani (2n=36) consisted exlusively of acrocentric chromosomes of gradually 
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decreasing size. A similar heteromorphic sex chromosome pair was found in female specimens 

of both species, in which the W chromosome (chromosome 15) is distinctly smaller than the Z 

counterpart (tentatively, chromosome 9 or 10), and showed an intense fluorescent signal after 

DAPI staining. 

Fig. 1. Karyotypes of female specimens of each of the species studied arranged from 

DAPI stained metaphases. Scale bars represent 5 μm. 
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The diplod chromosome number in female I. bonnali was 2n=23, and the karyotype 

comprised 13 biarmed and 10 acrocentric chromosomes. In this species, the W chromosome is 

a metacentric element (chromosome 7) and its homologues—Z1 and Z2—are two smaller 

acrocentric elements (chromosomes 8 and 12, respectively). A bright DAPI-positive region 

was observed in the q arm of the W chromosome. 

The karyotype of L. schreiberi (2n=38) was composed 36 acrocentric chromosomes, 

gradually decreasing in size, and a pair of microchromosomes. The female specimen analyzed 

showed a heteromorphic pair formed by a small, DAPI-positive element (chromosome 14 or 

15), and a medium-sized counterpart, which was as large as the chromosomes of pair 9, 

suggesting a possible ZZ/ZW sex chromosome system. 

The karyotype of female T. lepidus (2n=36) contained one large metacentric chromosome 

pair, 31 acrocentric chromosomes and three microchromosomes. One of the microchromomes, 

distinctively stained by DAPI, was recognized as the W sex chromosome, while the putative Z 

was identified as a medium-sized acrocentric element (chromosome 10). 

C-banding revealed similarities in the abundance and distribution of constitutive

heterochromatin in the karyotypes of these species, such as the presence of DAPI- and CMA3-

positive centromeric and interstitial/pericentromeric blocks, and the occurrence of GC-rich, 

faint telomeric C-bands in at least the largest chromosomes of the karyotypes (Fig 2). 

Differences in the C-banding patterns of these species were mainly associated to the sex 

chromosomes. The W chromosomes of I. monticola and I. galani are almost completely 

heterochromatic, with only a small euchromatic region located in an interstitial position (Figs. 

2a, b). The submetacentric W chromosome of I. bonnali shows a prominent C-band in the 

distal region of the q-arm (Fig. 2c). In L. schreiberi, the smaller chromosome of the 

heteromorphic pair (the putative W chromosome) is also easily recognizable after C-banding 

by bearing a prominent heterochromatin block in interstitial position (Fig. 2d). This same 

pattern is found in the W chromosome of T. lepidus which, despite its small size, seems to be 

only partially heterochromatic, with an interstitial C-positive region surrounded by proximal 

and distal euchromatic areas (Fig. 2e). In all the cases, the heterochromatin of the W 

chromosomes resulted intensely stained after both DAPI and CMA3 staining. As described 

previously in Chapter 1, the Z chromosome of I. monticola could be distinguished from the 

autosomes by bearing a brighter, CMA3-positive, telomeric C-band. Lack of males from all the 

remaining analyzed species hindered the unequivocal identification of the Z chromosomes by 

C-banding, so they could be only designated by pairing of chromosomes according to size, as

described above.
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Fig. 2. C-banded and CMA3-stained 

metaphase plates of female I. monticola 

(a), I. galani (b), I. bonnali (c), L. 

schreiberi (d), and T. lepidus (e). Arrows 

point to W sex chromosomes. Scale bars 

represent 10 μm. 

Flow sorting of I. monticola chromosomes and characterization of painting probes 

The 36 chromosomes of the karyotype of I. monticola were differentiated into 14 separate 

flow peaks. Painting probes from each peak were hybridized onto I. monticola metaphase 

chromosomes to determine the chromosome content of these flow peaks (Fig. S1, 

Supplementary Material). Nine chromosome pairs could be resolved separately, and 

chromosome-specific painting probes were obtained from them (IMO1-3, 6-10, 17). Three 

peaks contained two chromosomes each (IMO4,5; IMO5,7 and IMO15,16), and two peaks 

contained three chromosomes (IMO11,12,Z; IMO13, 14+W). 

ba

dc

e
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Cross-species chromosome painting 

The probe containing I. monticola chromosomes 13, 14 and the W sex chromosome 

(IMO13,14,W) hybridized to two small, acrocentric chromosome pairs in I. galani (IGA13 

and 14) and I. bonnali (IBN9 and 10) (Figs. 3a, b). It also painted the euchromatin of the W 

chromosome in I. galani, and the euchromatin at the end of the q-arm of the submetacentric W 

chromosome in I. bonnali. A screening with the remaining flow-sorted fractions of I. 

monticola showed that the p-arm of the W chromosome of I. bonnali is homologous to I. 

monticola chromosomes 15 or 16 (Fig. 3c). The probe IMO13,14,W also hybridized to a pair 

of small acrocentric chromosomes in L. schreiberi and T. lepidus (chromosomes 13 and 14 in 

both species). However, no signal was detected either on the W chromosome of L. schreiberi 

or on the W microchromosome of T. lepidus (Figs. 3d, e). 

Fig. 3. Cross-species chromosome painting with the IMO13,14,W probe on 

metaphases of a I. galani (IGA); b I. bonnali (IBN); d L. schreiberi (LSC); e T. 

lepidus (TLE). Arrows point to W chromosomes. c Chromosome painting with the 

IMO15,16 probe on I bonnali. The arrow indicates the p-arm of the neo-W 

chromosome. Scale bars represent 10 μm. 

The study of chromosome synteny with the whole set of I. monticola probes on L. 

IMO13,14,W IMO13,14,W IMO15,16 IGA IBN IBN 

a b c
IMO13,14,W LSC 

d

IMO13,14,W TLE 

e
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schreiberi and T. lepidus revealed a high degree of karyotype conservation between the three 

species (see Figs. S2 and S3, Supplementary Material, for the complete results of chromosome 

painting on L. schreiberi and T. lepidus, respectively). Most I. monticola chromosomes were 

completely preseved—both in DNA content and morphology—in the other lacertids. One of 

the few rearrangements detected involved I. monticola chromosomes 2 and 4, which form the 

q and p-arms, respectively, of the metacentric chromosome 1 of T. lepidus (Figs. 4a, b). In 

contrast, they are homologous to acrocentric chromosomes 2 and 4 in L. schreiberi (Figs. 4c, 

d). 

Fig. 4. Cross-species chromosome painting with IMO2 and IMO4,5 probes on 

metaphases of T. lepidus (a, b) and L. schreiberi (c, d). Arrows in b point to the p-arm 

of T. lepidus chromosome 1, which painted by the IMO4,5 probe, but not by IMO5,7. 

Scale bars represent 10 μm. 

Another discrepancy was found with the paint IMO11,12,Z. This probe painted an odd 

number of medium-sized chromosomes in I. monticola (Fig. 5a). The unpaired chromosome— 

which, according to its size, could be chromosome 10—is presumably the Z sex chromosome. 

Chromosome painting with this probe on male I. monticola metaphases labeled an even 

number of chromosomes, thus confirming that this flow peak contains the Z chromosome (Fig. 

IMO2 TLE TLE IMO4,5

a b

IMO2 LSC 

d 

LSC IMO4,5

e 

b c

TLE IMO5,7
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5b). Similarly, IMO11,12,Z hybridized to five medium-sized acrocentric chromosomes on 

female T. lepidus metaphases. Based on karyotype reconstruction, the Z sex chromosome 

could also be the tenth largest element (Fig. 5c). In addition, the probe also marked the 

microchromosome pair of T. lepidus. A different painting pattern was found in L. schreiberi, 

which showed signals in three medium-sized chromosome pairs and in the microchromome 

pair, suggesting that IMOZ is not conserved in this species (Fig. 5d). Among all the paints 

examined, only IMO15,16 detected an odd number of chromosomes in L. schreiberi. This 

probe labeled the three smallest chromosome pairs in I. monticola and T. lepidus. However, in 

L. schreiberi it painted two small chromosome pairs and a medium-sized element

(chromosome ), which would tentatively be the Z (Fig. 5e).

 

Fig. 5. Cross-species chromosome painting with the IMO11,12,Z probe on 

metaphases of a female I. monticola (IMOf); b male I. monticola (IMOm); c T. 

lepidus; d L. schreiberi. e Chromosome painting with the IMO15,16 probe on L. 

schreiberi. The arrow indicates the putative Z chromosome. Scale bars represent 

10 μm. 

Interspecies comparative genomic hybridization (iCGH) 

Absence of hybridization signal with the IMO13,14,W probe on the W chromosomes of L. 

IMOm

TLE LSC

IMO11,12,Z IMO11,12,Z

IMO11,12,Z IMO11,12,Z IMO15,16 

IMOf 

LSC

a b 

c d e



Verónica Rojo Orons 

98 

schreiberi and T. lepidus lead us to further investigate the differentation of W chromosomes 

between the three species by carrying out interspecies CGH. Reciprocal CGH experiments 

highlighted the accumulation of species-specific sequences in the W chromosomes previously 

identified as the W (Fig. 6). For instance, the W chromosome of I. monticola was 

predominantly labeled by I. monticola genomic DNA when co-hybridized with genomic DNA 

of either L. schreiberi or T. lepidus (Figs. 6a, b). The same pattern was observed on 

metaphases of L. schreiberi and T. lepidus (Figs. 6c, d and 6e, f, respectively). Due to the 

bright signals produced by the repetitive content of the W chromosomes, it was not possible to 

elucidate if the molecular composition of sex chromosomes differed only at the 

heterochromatic or also at the euchromatic regions. 

Moreover, all pairwise comparisons showed differentially labeled regions at the 

centromeres of I. monticola and T. lepidus chromosomes, suggesting that centromeric 

heterochromatin is composed of repetitive elements that are either species-specific or have 

been differentially amplified DNA in these taxa. 

 

 

 

Fig. 6. Interspecies comparative genomic hybridization on female metaphases of I. 

monticola (a, b), L. schreiberi (c, d), and T. lepidus (e, f). Genomic DNA of I. 

monticola is stained with TRITC (IMO; red), genomic DNA of L. shcreiberi is stained 

with FITC (LSC; green), and genomic DNA of T. lepidus with both FITC (b, e) and 

TRITC (d, f). Arrows point to W chromosomes. Scale bars represent 10 μm. 

IMO+LSC on IMO

IMO+TLE on TLE

IMO+TLE on IMO

TLE+LSC on LSC

IMO+LSC on LSC 

a b c

TLE+LSC on TLE 
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PCR-assisted gene mapping 

The results of gene mapping on sorted chromosomes of I. monticola and the chromosomal 

location of the selected markers in other reptilian species are summarized in Table 2 and in Fig 

7. Of the 30 primer pairs designed for this analysis, seven yielded the expected products on

genomic DNA but failed to amplify in the chromosomal templates. PCR amplification for

these markers was unsuccessful or inespecific even after the use of internal, species-specific

primers designed from the sequences of the amplicons obtained on genomic DNA.

Only 12 out of 30 genes were amplified in a single chromosomal template and hence could 

be unambiguously assigned to particular chromosomes. The remaining 11 genes yielded PCR 

amplification in two or more chromosome fractions. Even if the regions for primer design 

were selected to avoid simultaneous amplification of paralogs in A. carolinensis, genomic 

sequence information was not available for species phylogenetically closer to I. monticola. 

Therefore, it is posible that some of these PCR products are the result of cross-amplification of 

paralogs of the target genes located on different chromosomes. However, sequences of the 

amplicons obtained from different chromosome templates were virtually identical and we did 

not find specific nucleotide differences which enabled the discrimination of paralogs. Hence, it 

was not possible to solve the correct map position of these markers. 

Even so, some interesting results were obtained by comparing our data with the cytogenetic 

maps available for several sauropsid species [Gallus gallus, Lacerta agilis, and five 

representatives of the so-called Toxicofera clade (i.e., the group encompassing snakes, 

anguimorphs and iguanians; Vidal and Hedges 2005): Anolis carolinensis, Varanus salvator 

macromaculatus, Leiolepis reevesii rubritaeniata, Pogona vitticeps and Elaphe quadrivirgata]. 

For instance, four genes that were mapped to I. monticola (IMO) chromosome 1 were located 

on A. carolinensis (ACA) chromosome 1 and G. gallus (GGA) chromosomes 3, 5, 7 and 13. 

Three genes on IMO6 were localized to microchromosomes LGc, LGd and LGh in ACA, 

which are homologous to GGA11 and GGA21. The smallest chromosome in the karyotype of 

I. monticola, IMO17, also seems to have homology with ACA and GGA microchromosomes

(LGa and LGf, and GGA24, respectively). In addition, two genes, localized to ACA

microchromosome LGb (the XY sex chromosome pair) and GGA15, were mapped to both

IMO6 and IMO17. Interestingly, thee genes located on the Z chromosome of L. agilis (LAG5)

were assigned to IMO1 and/or IMO5-7. They were amplified neither on the chromosomal

fraction containing IMO Z chromosome, nor on IMO15-16-17, which painted the putative Z

chromosome of L. schreiberi.
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Fig. 7. Schematic representation of I. monticola karyotype showing the chromosomal 
locations of mapped genes in comparison with L. agilis (LAG), A. carolinensis (ACA) and 
Gallus gallus (GGA). The gene order in I. monticola is unknown. Colored regions indicate 
putatively conserved chromosome blocks. 

Discussion 

Karyotype evolution and sex chromosome differentiation in lacertids 

Our results confirm the previously published karyotypes of I. galani (Arribas et al. 2006), I. 

bonnali (Odierna et al. 1996) and T. lepidus (De Smet 1981; Olmo et al. 1987), in addition to 

the karyotype of I. monticola, previously detailed in Chapter I. Even though only males of I. 

monticola were available to us at the time of the study, the sex chromosomes described for all 

these species concur with the previous reports. 

The karyotype of L. schreiberi described by Mateo and Cano (1991) showed a diploid 



Verónica Rojo Orons 

102 

chromosome number of 2n=38, containing 36 macrochromosomes and 2 microchromosomes, 

and no heteromorphic sex chromosomes. Our investigation confirmed this diploid complement, 

but revealed the presence of a heteromorphic chromosome pair in female metaphases of L. 

schreiberi, where one of the homologues had an intertitial C-positive heterochromatic block 

that might indicate a putative W sex chromosome. Unfortunately, this work could not be 

extended to males of this species. However, ongoing analyses in a male specimen have already 

demonstrated that the heterochromatinized chromosome is specific to females, thus supporting 

the occurrence of a ZZ/ZW sex chromosome system in this species (I. Gómez-Seoane, 

personnal communication). The identical chromosome number in male and female indicates 

that the Z chromosome must be present in two copies in males and a single copy in females, 

and thus rules out a multiple Z1Z2/Z1Z2W sex chromosome system. Identification of the Z 

chromosome was not straightforward, but it could tentatively be a medium-sized chromosome, 

as large as the chromosomes of pair 9 or 10. It is possible that the differences between our 

observations and those of Mateo and Cano (1991) are due to the different origin of the 

examined individuals: the specimens studied in that previous work were sampled from the 

locality of Santa María de Ortigueira (A Coruña, Spain), while the female analyzed in the 

present work came from a different population (Natural Park Montes do Invernadeiro; Ourense, 

Spain). Therefore, they could represent different chromosomal races, even though these 

populations seem to constitute a single genetic unit with extensive gene flow (e.g., Paulo et al. 

2001; Godinho et al. 2008). Alternatively, differences in the karyotypes could be related to the 

experimental approach followed by Mateo and Cano: although both males and females were 

included in their work, sex chromosome heteromorphism was investigated in male meiosis, 

which would have hampered the detection of a female-specific sex chromosome. 

A comparison among karyotypes of the three genera analyzed in this study concurs with the 

previously reported stable chromosome morphology in lacertid lizards (Olmo et al. 1986), 

which typically show a karyotype with 36 acrocentric chromosomes and two 

microchromosomes (Olmo and Signorino 2005). Among the species analyzed, L. schreiberi 

has retained the ancestral karyotype. The main structural differences among their karyotypes 

concern the presence of a large metacentric chromosome pair in T. lepidus and the lack of 

microchromosomes in Iberolacerta. Reduced diplod numbers of 2n=36 in T. lepidus and in 

most Iberolacerta species suggest that the metacentric element in the former species could be 

the result of a Robertsonian fusion between two acrocentric chromosomes, while the loss of 

microchromosomes could be a consequence of a translocation of microchromosomes to 
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macrochromosomes before species radiation within Iberolacerta (Cobror 1984; Olmo et al. 

1986). Indeed, our results of chromosome painting show that the metacentric element of T. 

lepidus has been formed by a centric fusion involving chromosomes homologous with I. 

monticola chromosomes 2 and 4. On the other hand, the microchromosomes of T. lepidus and 

L. schreiberi were painted by the probe IMOZ,11,12, indicating that lack of

microchromosomes in I. monticola is a result of their translocation to chromosomes 11 or 12.

The analysis of homology of sex chromosomes between the three species (discussed below)

make the fusion between microchromosomes and the Z chromosome of I. monticola less likely

than their fussion to autosomes 11 or 12. Interestingly, interstitial telomeric sites (ITSs) were

not detected by FISH in any of these three chromosome pairs (see Chapter I), which suggests

that telomeric sequences were not retained at the fusion point.

Thus, ancestral syntenies have remained unchanged for at least 12-16 myr (Arnold et al. 

2007; Pavlicev and Mayer 2009) in Lacertidae, and the rapid diversification of this family has 

been accompanied by only a few chromosome rearrangements. The general karyological 

uniformity of lacertids contrast sharply with the karyotype of I. bonnali, that shows a highly 

derived diplod number (2n=23 in females, 24 in males) and the presence of numerous biarmed 

elements (Odierna et al. 1996; present work). This condition is not exclusive of I. bonnali, but 

is also shared by the two other species of the Pyrenean clade of Iberolacerta, I. aranica (2n= 

26) and I. aurelioi (2n=25-26) (Odierna et al. 1996). As both the ancestral and derived

karyotypes possess the same fundamental number (NF=36), the latter probably originated

through chromosomal rearrangements involving several Robertsonian fusions, after the

separation of the Pyrenean and the I. horvathi-Iberian clades, about 11.6-15.6 mya (Arribas et

al. 2014). The cause of this increased rate of karyotype evolution in the Pyrenean taxa remains

to be investigated.

Homology and evolution of lacertid sex chromosomes 

Cytogenetic analyses of lacertid sex chromosomes published so far suggest that female 

heterogamety is universal within this family, and that the W chromosome exhibits various 

stages of differentiation in different lineages: from homomorphic and poorly differentiated to 

heteromorphic and highly heterochromatinized (Olmo et al. 1986, 1987; Odierna et al. 1993; 

Olmo and Signorino 2005). However, the number of lacertid taxa with differentiated sex 

chromosomes will probably increase as the karyotypes of more species with cryptic or 

presumably homomorphic sex chromosomes are subjected to detailed investigations with more 

sensitive cytogenetic techniques, as found in this thesis for I. monticola and L. schreiberi. 
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According to the proposed model of sex chromosome evolution in lacertids (Olmo et al. 

1987; Odierna et al. 1993), the W chromosome found in our analysis in L. schreiberi—

moderately heterochromatic with two broad euchromatic areas—would represent an earlier 

stage of degeneration than the W chromosomes of I. monticola and I. galani—comparatively 

smaller and mostly heterochromatic—while the W microchromosome of T. lepidus would 

show the highest level of differentiation. Besides the well-documented diversity of sex 

chromosomes in Iberolacerta, previously reported in Chapter I, the two other genera 

investigated in this work are good representatives of the plasticity of sex chromosomes in 

lacertids. For instance, populations of Lacerta viridis viridis from Hungary, like L. schreiberi, 

have a intermediate-sized W chromosome, but completely C-banded (Olmo et al. 1986). Yet 

some other species, such as L. agilis, L. trilineata, L. strigata and perhaps different 

populations of L. viridis have a micro-W chromosome (Gorman 1969; Ivanov and Fedorova 

1970 1970; De Smet 1981; Olmo et al. 1987; Srikulnath et al. 2014). Intraspecific variability 

in sex chromosomes has also been reported for T. lepidus: specimens from a population in 

Northeastern Spain have been found to possess a homomorphic and heterochromatic W 

chromosome, whilst specimens from a different, but unknown, Spanish population have a W 

microchromosome, as the one found in the present study (Olmo et al. 1987). Altogether, these 

findings, and the general lack of phylogenetic correlation in the degree of heteromorphism, 

have lead to suggest that the transition from a primitive stage of sex chromosome 

differentiation, where both homologues are cytologically indistinguishable, to a more 

advanced stage, with a W chromosome heteromorphic and heterochromatic, might have 

happened independently in different species, and even in subspecies or populations of the 

same species (Olmo et al. 1987; Odierna et al. 1993). 

However, no studies have evaluated so far the homology between the sex chromosomes of 

different species. Here, we found that the probe containing the W chromosome of I. monticola 

painted the euchromatic region of the W chromosome in I. galani, as well as the q arm of the 

W chromosome in I. bonnali, which indicates that the female-specific chromosomes are 

conserved among the three species. Lack of hybridization of the W-derived probe on the Z 

counterparts in either species suggests that the Z and W chromosomes share few or no 

sequences, and further supports the advances stage of degeneration of W chromosomes 

detected by C-banding. 

As mentioned before, I. bonnali differs from the two other Iberolacerta species analyzed in 

bearing a biarmed W chromosome and a multiple Z1Z2W sex chromosome system. Multiple 
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sex chromosomes are thought to evolve via autosome-sex chromosome fusions (Wright 1973; 

King 1977; Olmo 1986; Odierna et al. 2001; Leaché and Sites 2009; Ezaz et al. 2009). Indeed, 

a screening with the remaining flow-sorted fractions of I. monticola revealed that the 

autosome which fused to the primitive W to form the neo-W chromosome in I. bonnali was 

chromosome pair 15 or 16. The homologous chromosomes now serve as Z1 and Z2 sex 

chromosomes. This multiple sex chromosome system is also present in at least another of the 

three Pyrenean species of Iberolacerta, I. aurelioi (Odierna et al. 1996). Since a simple ZW 

system seems to be the ancestral condition for this genus (see Chapter I), the occurrence of 

multiple sex chromosomes, like the abundance of biarmed elements in their karyotypes, would 

be a plesiomorphic character of this clade. 

Even though multiple sex chromosomes are common in lizards with XY systems, they are 

rather unusual in ZW species (Ezaz et al. 2010). As far as we know, multiple sex chromosomes 

are only present in the family Lacertidae, with the exception of an unusual Z1Z2W1W2 system

recently described in the gecko Paroedura gracilis (Koubová et al. 2014). Among lacertids, 

Z1Z2W sex chromosomes have evolved independently not only in the Pyrenean Iberolacerta, 

but also in Podarcis taurica and in Zootoca vivipara (Olmo and Signorino 2005). The latter 

case is especially interesting, since multiple and simple sex chromosomes have been found in 

different populations of the same species (e.g., Odierna et al. 2001; Kupriyanova et al. 2006). 

Chromosome painting with the IMOW probe produced no hybridization signal either on the 

W chromosome of L. schreiberi or on the W microchromosome of T. lepidus. The putative 

differences between the W chromosomes of the three species were further investigated by 

using comparative genomic hybridization. These reciprocal cross-species hybridization 

experiments demonstrated that female-specific sequences are not conserved between the three 

species and, hence, they may have been amplified independently on the W chromosomes after 

the separation of these three genera. In fact, FISH experiments with a probe of TaqI satellite 

DNA, isolated from Iberolacerta (see Chapter III), showed that the this satellite family, which 

is widely distributed in the genomes of the three species, has been subsequently amplified only 

in the W chromosome of L. schreiberi (Fig. S4; Supplementary Material). Since Lacerta s. str. 

and Timon are sister taxa (e.g., Arnold et al. 2007; Pyron et al. 2013), the sex-specific 

accumulation of TaqI repeats may be a feature exclusive of the genus Lacerta s. str., or even 

only of L. schreiberi. Similarly, a recent study documented a rapid and independent 

amplification of different microsatellite motifs on the W chromosomes in two clades of 

Australian monitor lizards (Matsubara et al. 2014a). These observations suggest that 

differentiation of sex chromosomes, even between closely related species with the same type 
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of sex chromosome system, may follow independent pathways, perhaps associated with the 

accumulation of different repetitive sequences and lineage-specific rates of W chromosome 

degeneration. 

In order to determine whether the lack of conservatism of the W chromosomes was 

extensive to their Z counterparts, chromosome painting using the Z chromosome probe from I. 

monticola (IMOZ) was also performed on L. schreiberi and T. lepidus metaphases. The probe 

labelled an odd number of small acrocentric chromosomes in T. lepidus, identifying an 

unpaired chromosome which is tentatively the Z. Therefore, the Z chromosome of T. lepidus 

seems to be homologous to the Z chromosome of I. monticola. On the contrary, the IMOZ 

probe hybridized to an even number of chromosomes in L. schreiberi, and the putative Z 

chromosome of this species was detected with the IMO probe containing chromosome pairs 

15-16. Recently, the Z chromosome of a congeneric species, L. agilis, has been identified

through chromosome banding and gene mapping as the fifth largest chromosome of the

karyotype (Srikulnath et al. 2014). It appears to be somewhat larger in size than the putative Z

chromosome of L. schreiberi, which in our karyotype reconstruction is as large as

chromosome 10.

Even if these results are yet to be confirmed in males of L. schreiberi and T. lepidus, our 

preliminary data suggest that sex determination in L. schreiberi involves a ZW chromosome 

pair that is different from the ZW chromosomes of I. monticola and T. lepidus. This apparent 

lack of homology is stricking, considering the strong conservatism of lacertid karyotypes, the 

advanced stage of degeneration of L. schreiberi W chromosome and the short divergence time 

and the rapid diversification of Lacertini lineages (12-16 mya) (Arnold et al. 2007; Pavlicev 

and Mayer 2009). However, it would not be unique among lizards: rapid evolution of non-

homologous ZW sex chromosomes has been reported in Australian dragon lizards which 

diverged at most around 25 mya (Ezaz et al. 2009b). Another recent study using chromosome 

painting showed that the ZW sex chromosomes of two gecko species are not homologous and 

represent independently derived ZW sex chromosomes within the Gekkonidae (Matsubara et 

al. 2014b). 

Since the genus Lacerta s. str. is nested among lineages with homologous sex chromosomes 

(i.e., Timon and Iberolacerta), the sex chromosome pair of L. schreiberi seems to be represent 

a derived condition. Thus, a possible evolutionary scenario would be the presence of an 

original, poorly differentiated ZW system in the common ancestor of Lacertini, which is still 

present in T. lepidus and Iberolacerta. In L. schreiberi, or perhaps in the ancestral Lacerta 
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species, a shift from one ZW system to a different ZW system may have occurred after the 

translocation or transposition of the sex determining gene to a non-homologous chromosomal 

region, or when the appearance of a neo-sex determining gene on an autosomal pair defined a 

new W chromosome, as proposed for salmonid fishes (Woram et al. 2003; Phillips 2013). 

Alternatively, it is also possible that the ancestral situation was the presence of a 

differentiated ZW chromosome pair, which was subsequently lost in the lineage leading to L. 

schreiberi. An analogous scenario has been recently proposed to explain transitions of sex 

chromosomes in Madagascar geckos of the genus Paroedura (Koubová et al. 2014) or in 

Drosophila (Vicoso and Bachtrog 2013). For instance, loss of differentiated sex chromosomes 

in Drosophila involved the reversal of an ancient sex chromosome back to an autosome, and 

takeover of the sex determining function by a formely autosomal pair (Vicoso and Bachtrog 

2013). 

Even if these hypotheses are merely speculative, the putative independent evolution of sex 

chromosomes among closely related taxa suggests that there may be cryptic complexity in the 

evolution of lacertid sex chromosomes. Hence, assessing sex chromosome homology among 

other closely related species and genera, as well as in outgroups to Lacertidae, should be a 

priority for future research. The Z and W chromosome paints developed in the present work 

will be valuable for this purpose. 

PCR-assisted gene mapping and karyotype evolution in squamate reptiles 

A recent cytogenetic map of Lacerta agilis (LAG) showed that the largest acrocentric 

chromosomes of this lacertid species are largely syntenic with macrochromosomes and/or 

macrochromosome segments of Gallus gallus (GGA) and four Toxicofera species (Anolis 

carolinensis, ACA; Varanus salvator macromaculatus, VSA; Leiolepis reevesii rubritaeniata, 

LRE; and Elaphe quadrivirgata, EQU). Most of the genes located on the microchromosomes 

of Toxicofera were localized to L. agilis chromosome 6 (LAG6), small acrocentric 

chromosomes (LAG11-18), and a microchromosome (LAG19) (Srikulnath et al. 2014). 

Linkage homology of IMO chromosomes with the macrochromosomes of the other species 

based on our results of PCR-assisted gene mapping remains largely unresolved, because this 

approach had several caveats. Firstly, almost a third of the selected markers could be amplified 

on genomic DNA, but not on the chromosomal templates. It has been reported that the 

efficiency of PCR on chromosomes consisting of condensed DNA complexes with proteins 

may be lower in comparison to PCR using pure DNA (Kejnovský et al. 2001). In addition, 

non-specific methods of DNA amplification from flow-sorted chromosomes, such as DOP-
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PCR, are characterized by high amplification bias and provide incomplete genome coverage 

(Dean et al. 2002; Pinard et al. 2006), so it is possible that some genomic regions containing 

target genes were absent in the chromosomal fractions. 

Secondly, more than half of the genes with successful amplification were detected in 

several chromosomal templates and could not be unambiguously assigned to particular 

chromosomes. In some of these cases, the specific PCR product was amplified in 

chromosomal templates which were contiguous in the flow karyotype (e.g., GMPPA in 

chromosomes 1 and 2-3), suggesting that there may be contamination from DNA of the 

neighboring peaks. A different pattern was found for some other genes, such as DMRT1. The 

DMRT1 gene is a conserved component of the sex-determining pathway of vertebrates and is a 

strong candidate for male sex determination in birds (Smith et al. 2009). It also lies on the Z 

and W chromosomes in the gecko lizard Gekko hokouensis (Kawai et al. 2009). However, 

DMRT1 has been mapped to autosomes in the other Toxicofera species [ACA2p, VSA1p, 

Pogona vitticeps (PVI) 2p, LRE2p and EQU2p] (Matsubara et al. 2006 ; Srikulnath et al. 2009, 

2013; Ezaz et al. 2009c; Alföldi et al. 2011; Young et al. 2013), and to one of the smallest 

acrocentric macrochromosomes in L. agilis (LAG11-18). In contrast, it was amplified on IMO 

chromosomes 1 and 5-7. This pattern of co-amplification on both chromosomes 1 and 5-7 was 

also found for genes SH3PXD2A [LAG5(Z)] and IPO5 (LAG4), and it might indicate 

contamination of chromosome peak IMO1 with fragments of chromosomes 5-7, or vice versa. 

Alternatively, the pattern oberved for these genes may not be due to contamination of flow 

sorted fractions, but to structural rearrangements, like interchromosomal segmental 

duplications, in the genome of I. monticola. Even though our results of chromosome painting 

show a high degree of chromosome conservation between I. monticola and L. schreiberi, such 

structural changes might have not been detected at the resolution of whole chromosome 

painting (see, e.g., Bailey et al. 2002, for a demonstration of segmental duplications in human 

chromosome 22 previously undetected by chromosome painting). Physical mapping of cDNA 

fragments of these genes would be useful to corroborate their chromosomal location and 

examine the extent of chromosomal rearrangements in I. monticola. 

The shortcomings of this experimental approach hampered the investigation of linkage 

homology between the chromosomes of I. monticola and the macrochromosome and/or 

macrochromosomal arms of the Toxicofera clade, except for chromosome 1. Four genes 

mapped to IMO1 were localized to ACA1, and to chicken chromosomes 3, 5, 7 and 13. 

Homology with GGA3, GGA5 and GGA7 was also found in VSA2, LRE1, PVI and EQU1 
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(Pokorná et al. 2012; Srikulnath et al. 2009, 2013; Young et al. 2013). In all these species, an 

arm of a large of a large bi-armed chromosome (1 or 2) is sytenic with GGA3, while the 

proximal and distal parts of the other arm are syntenic with GGA7 and GGA5, respectively. 

Indeed, this synteny is conserved across most major squamate lineages, which suggests that 

the association of the avian ancestral chromosomes 3, 5 and 7 can be dated back to the 

common ancestor of the lineage Unidentata (Serpentes, Iguania, Anguimorpha, Laterata and 

Scinciformata) (Pokorná et al. 2012). In the lacertid Eremias velox, GGA5 and GGA7 probes 

hybridized to part of chromosome 1, while the GGA3 probe painted a different pair of 

acrocentric chromosomes (Pokorná et al. 2012). The only gene located on GGA3 in our study 

(WDR43) was mapped to IMO1, whereas two different GGA3-linked genes were localized to 

chromosome 3 in L. agilis. Altogether, these data suggest that the fission of the ancestral bi-

armed chromosome took place in the ancestral lacertid karyotype but it might have been 

preceded by intrachromosomal rearrangements, which anyway need to be confirmed by high-

resolution gene mapping. 

It is also interesting to note that three genes (SKIL, SH3PXD2A and ADAM12) linked to the 

Z chromosome of L. agilis (LAG5) were mapped to IMO1 and/or IMO5-7. They were 

amplified neither in the sample containing the Z chromosome of I. monticola (IMOZ,11,12), 

nor in the sample that painted the putative Z chrosomome in L. schreiberi (IMO15,16). 

Physical gene mapping of LAGZ orthologs, along with comparative chromosome painting 

with the IMOZ probe in more species representative of different lacertid lineages, will be 

necesssary to elucidate sex chromosome evolution in this group. 

One of the characteristic features of lacertid karyotypes, in comparison with the karyotypes 

of Toxicofera species, is the reduction in the number or even the absence of 

microchromosomes (e.g., only one chromosome pair in L. agilis and no microchromosomes in 

I. monticola). In agreement with the cytogenetic map of L. agilis, our results show that genes

localized on the microchromosomes of A. carolinensis were mostly located on IMO6 and

IMO17. In fact, both chromosomes, and perhaps some other small chromosome pairs (11-18),

appear to be syntenic only to Toxicofera microchromosomes. This suggests that the

dissappearance of microchromosomes in the lacertid karyotype resulted from repeated fusions

between these elements in the ancestral karyotype, rather than from translocation of

microchromosomes to macrochromosomes. Interestingly, two genes (ATP2A2 and SBNO1)

anchored to the X chromosome of A. carolinensis (microchromosome LGb) were mapped to

both IMO6 and IMO17. According to the results of L. agilis, which localized both genes to

LAG11-18, it seems reasonable to supposse that their chromosomal location is IMO17.
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Anyhow, the micro-X chromosome of A. carolinensis is not homologous to the Z chromosome 

of either I. monticola or L. agilis. These new data fill an important gap in the knowledge of sex 

chromosome homology between lacertids and other squamate groups, and further support the 

multiple and independent origin of lizard sex chromosomes from different autosomal pairs of 

the common ancestor. 
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Fig.  S1.  Chromosomal  assignment  of  flow karyotype  peaks on female  I.  monticola.
Arrows in k and l point to Z and W sex chromosomes, respectively. Scale bars=10 μm.
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Fig. S2. Chromosome painting with the whole set of I. monticola probes on female L.
schreiberi. Arrows in  l and m point to W and Z sex chromosomes, respectively. Scale
bars=10 μm.
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Fig. S3. Chromosome painting with the whole set of I. monticola probes on female T.
lepidus. Arrow in l points to W and Z sex chromosomes, respectively. Scale bars=10 μm.
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Fig. S4.  Hybridization pattern of the TaqI satellite DNA probe on female metaphase
spreads  of  a L.  schreiberi,  b I.  monticola,  and  c T.  lepidus.  Arrows  point  to  W
chromosomes. Scale bars=10 μm.
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CHAPTER III 

Evolutionary dynamics of two satellite DNA families in 

Rock lizards of the genus Iberolacerta (Squamata, 

Lacertidae): different histories but common traits
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Abstract 

Satellite DNAs compose a large portion of all high eukaryotic genomes. The turnover of these 

highly repetitive sequences is an important element in genome organization and evolution. 

However, information about the structure and dynamics of reptilian satellite DNA is still 

scarce. Two satellite DNA families, HindIII and TaqI, have been previously characterized in 

four species of the genus Iberolacerta. These families showed different chromosomal 

locations, abundances and evolutionary rates. Here, we extend the study of both satDNAs to 

the remaining Iberolacerta species, with the aim to investigate the patterns of variability and 

factors influencing the evolution of these repetitive sequences. Our results revealed disparate 

patterns, but also common traits in the evolutionary histories of these satellite families: (i) each 

satellite DNA is made up of a library of monomer variants or subfamilies shared by related 

species; (ii) species-specific profiles of satellite repeats are shaped by expansions and/or 

contractions of different variants from the library; (iii) different turnover rates, even among 

closely related species, result in great differences in overall sequence homogeneity, and in 

concerted or non-concerted evolution patterns, which may not reflect the phylogenetic 

relationships among taxa. Contrasting turnover rates are possibly related to genomic 

constraints such as karyotype architecture and the interspersed organization of diverging repeat 

variants in satellite arrays. Moreover, rapid changes in copy number, especially in the 

centromeric HindIII satDNA, may have been associated with chromosomal rearrangements, 

and even contributed to speciation within Iberolacerta. 

Keywords: Concerted evolution · FISH · Iberolacerta · Library model · Satellite DNA · 

Squamate reptiles. 
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Introduction 

Satellite DNAs (satDNAs) represent one of the major classes of repetitive sequences in almost 

all eukaryotic genomes. They consist of tandemly repeated non-coding DNA sequences, 

typically arranged in large clusters of hundreds or thousands of copies usually located in the 

heterochromatic regions of chromosomes, close to the centromeres and telomeres 

(Charlesworth et al. 1994). Several satDNA families of independent origin are commonly 

found in the genome of a species or group of species, and they usually differ in nucleotide 

sequence, monomer length, and complexity, as well as in evolutionary history (Ugarković and 

Plohl 2002; Kuhn et al. 2008, 2010). The biological function of these sequences is not yet fully 

understood, although numerous reports point out the role of certain satellites in centromeric 

condensation, chromosome organization, or chromosome pairing (see Plohl et al. 2008). A 

growing field of research is also addressing the role of satDNA transcripts in the formation and 

maintenance of heterochromatin, and even in regulation of gene expression (Ugarković 2009; 

Pezer et al. 2012). In addition, several examples support the hypothesis that the rapid evolution 

of satDNAs can act as a driver of population and species divergence (Ugarković and Plohl 

2002; Feliciello et al. 2015). 

Despite their biological significance, satDNAs are still the least understood genomic 

component, underrepresented in outputs of most genome projects (Plohl et al. 2012). A 

common feature of many of them is that, even though monomers can be present in many 

thousand copies per genome, sequence divergence between repeats of the same family is often 

very low, usually less than 15% (Plohl et al. 2008). The non-independent or concerted 

evolution of repeat units is postulated to be a consequence of a two-step process called 

molecular drive, consisting of the gradual spread of a sequence variant (1) through a genome 

(homogenization) and (2) through a species (fixation) (Dover 1982). Sequence 

homogenization is due to diverse molecular mechanisms of nonreciprocal transfer, such as 

unequal crossing-over, gene conversion, rolling circle replication and reinsertion, and 

transposon-mediated exchange (Stephan 1986; Dover 2002), while fixation results from 

random chromosomal assortment in sexual reproduction, depending thus on population 

factors. This process results in rapid divergence of satellite sequences in reproductively 

isolated groups of organisms, and in this case satDNAs can be used as phylogenetically 

informative markers (Plohl et al. 2012). 

Accumulation of mutations in satellite families is not the only way to alter specific profiles of 

satellite repeats in short evolutionary periods. In addition to sequence changes, satDNAs are 

permanently altered in copy number by expanding and contracting arrays of satellite 
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monomers (Ugarković and Plohl 2002; Plohl et al. 2012). Because usually more than one 

satellite family exists in a genome, fluctuations in their copy numbers can change very 

efficiently and rapidly any profile of genomic satDNA. The library model of satDNA 

evolution explains the occurrence of species-specific satellite profiles as a result of differential 

amplifications and/or contractions within a collection, or library, of satellite sequences shared 

by related species (Fry and Salser 1977; Meštrovic et al. 1998; Ugarković and Plohl 2002). 

Not only distinct satDNAs, but also monomer variants or subfamilies from a single family can 

be distributed in genomes in the form of a library (Cesari et al. 2003). 

SatDNAs have been extensively studied in insects (Palomeque and Lorite 2008) and mammals 

(Enukashvily and Ponomartsev 2013), and less so in other taxa, although there are several 

exceptions. Squamata, by far the largest reptile order, is one of them (see, for example, 

Giovannotti et al. 2009, 2013; Chaiprasertsri et al. 2013). It includes the Lacertidae, a 

widespread species-rich group restricted to the Palearctic region, formed by two subfamilies, 

Gallotiinae and Lacertinae (Arnold et al. 2007; Sindaco and Jeremčenko 2008). So far, five 

satDNA families have been described in Lacertinae, with different taxonomic distributions. 

Three satellite families are genus-specific, namely pLHS in Podarcis (Capriglione et al. 1994; 

Capriglione 2000), CLsat in Darevskia (Ciobanu et al. 2003; Grechko et al. 2006), and Agi160 

in Lacerta (Ciobanu et al. 2004; Grechko et al. 2005). The other two families, on the contrary, 

are broadly distributed in Lacertinae: pLCS, shared by Algyroides, Teira, Lacerta, and 

Podarcis (Capriglione et al. 1989, 1991; Capriglione 2000), and pGPS, present in Podarcis, 

Archaeolacerta, Algyroides, Lacerta, and Zootoca (Capriglione et al. 1998). 

In a previous work (see AnnexII; Giovannotti et al. 2014), we isolated two new satDNA 

families in the lacertid genus Iberolacerta, a monophyletic group of rock lizards mainly 

distributed in highland areas of Western Europe. This genus comprises eight species, which 

can be subdivided into three main units: (1) I. horvathi, occurring in the Eastern Alps and the 

north of the Dinaric Chains; (2) the subgenus Pyrenesaura, which includes the three species 

found in the Pyrenees, (I. aranica, I. aurelioi and I. bonnali); and (3) the four species included 

in the ‘Iberian group’ (I. cyreni, I. martinezricai, I. galani, and I. monticola), with disjunct 

distributions in central and northern mountain ranges of the Iberian Peninsula. Previous 

cytogenetic surveys of the Iberolacerta species (Capula et al. 1989; Odierna et al. 1996; 

Arribas and Odierna 2005; Arribas et al. 2006; Rojo et al. 2014) showed them to possess a 

diploid number of 2n = 36, and a similar karyotypic macrostructure, with all chromosomes 

acrocentric. Only the karyotypes of the three Pyrenean species differ from this formula, with 

reduced diploid numbers that range from 2n = 24 to 26 in males, and from 2n = 23 to 26 in 

132 
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females, and many biarmed chromosomes that probably evolved from the ancestral acrocentric 

complement through a series of Robertsonian fusions (Odierna et al. 1996). 

According to the most recently published phylogeny (Arribas et al. 2014), speciation within 

Iberolacerta started ca. 13.5 million years ago (mya; 95% credibility interval 11.6–15.6), with 

the split between the clades formed by I. horvathi and the Iberian group, on one side, and by 

the Pyrenean species, on the other. This event was most likely to be quickly followed by the 

separation of I. horvathi, which took place approximately 11.5 mya (9.6–13.7). Within the 

Iberian group, I. cyreni split earlier (7.3–8.5 mya), while the speciation events within the clade 

formed by I. martinezricai, I. galani, and I. monticola occurred considerably later, at the 

beginning of the Pleistocene, 2.1–2.9 mya. The three Pyrenean species probably originated in 

rapid succession ca. 3.8 mya (2.7–4.9), although this phylogenetic analysis suggests that I. 

bonnali split first, shortly before the separation between I. aranica and I. aurelioi, 3.3 mya 

(2.3–4.3). Notwithstanding minor uncertainties still remaining, the mapping of satDNA 

differences on that species tree is likely to provide valuable information about the time and 

mode of evolution of these repetitive sequences. In our previous work (Giovannotti et al. 

2014), we analyzed two unrelated satDNA arrays in the Iberian clade of Iberolacerta: (1) the 

centromeric HindIII family, which comprises two subfamilies (I and II) and represents 5%–

10% of the genome, and (2) the TaqI family, which shows only interstitial loci and represents 

2.5%–5% of the genome. The nucleotide sequences of the two families were presumably 

evolving at different rates, almost tenfold higher for centromeric than for instertitial repeats, 

after comparing I. cyreni vs. the other, relatively closer, species of the Iberian clade. In 

agreement with this conclusion, the HindIII family seems to be specific to the genus 

Iberolacerta (Capriglione et al. 1989, 1991, 1998; Capriglione 2000), whereas the TaqI 

satDNA has also been detected in representatives of three other genera of the subfamily 

Lacertinae (Lacerta, Podarcis and Timon). 

Here, we extend the study of both satDNAs to the remaining Iberolacerta species, and 

increase our dataset for HindIII satDNA, to further investigate the occurrence of two divergent 

subfamilies in the genomes of all these taxa. The results obtained offer a more complete 

portrait of the intra- and interspecific variability of these highly repetitive sequences, their 

genomic organization and chromosomal distribution, with the ultimate objective of 

contributing to assess the relative strength of the processes that determine their structure and 

mode of evolution. 
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Material and Methods 

Animals 

Genomic DNA was isolated from a total of 20 specimens, representing all eight Iberolacerta 

species. The number of specimens per species and their geographical origin are given in 

Supplementary Table S1. In addition, one male and one female of I. horvathi, and one female 

of I. bonnali were used to make metaphase chromosomes. Permissions for field work and 

experimental procedures were issued by the competent authorities: Xunta de Galicia (for I. 

monticola and I. galani), Junta de Castilla y León (for I. cyreni and I. martinezricai), Gobierno 

de Aragón (for I. bonnali) and Italian Environment Ministry (for I. horvathi). All institutional 

and national guidelines for the care and use of laboratory animals were followed. 

DNA extraction, PCR, cloning and sequencing 

Genomic DNA was extracted from ethanol preserved tissues using standard protocols with 

proteinase K digestion followed by phenol/chloroform extraction (see Sambrook et al. 1989). 

Two primer pairs designed in our previous work (HindIII-F: 5’-

TGAGTGTTTTACAGTTGAAAAGCT-3’; HindIII-R: 5’-CATTGTGTTATTTGAGCGCAA-

3’; TaqI-F: 5’-ATTCTGACCCTGGGGGTTAG-3’; TaqI-R: 5’-CATATTTAAAGAAATCAG 

GCCTCG-3’) were used for isolation of both satellite families from the genomes of I. 

horvathi, I. bonnali, I. aranica and I. aurelioi. An additional primer pair was designed to 

specifically amplify HindIII-subfamily II in all eight Iberolacerta species. (Hind_sfII-F: 5'-

CTCTTGCTTATTTCGCTCCAAATGA-3'; Hind_sfII-R: 5'-ATTTCTGTGTGCAGCATGCA 

TTGG-3'). PCR reactions were performed in a final volume of 25 μl containing ~25 ng of 

genomic DNA, 0.625 U of Taq DNA polymerase and 1x PCR buffer (Roche Diagnostics), 5 

nmol of each dNTP (Roche Diagnostics), and 20 pmol of each primer. The general reaction 

conditions were as follows: initial denaturation at 94ºC for 5 min; 35 cycles of denaturation at 

94ºC for 30 s, annealing at the following temperatures (HindIII-F/HindIII-R, 55 ºC; TaqI-

F/TaqI-R, 47 ºC; Hind_sfII-F/Hind_sfII-R, 58 ºC) for 30 s, extension at 72ºC for 30-60 s; and 

a final extension at 72ºC for 7 min. The obtained PCR products were run on 1.5% agarose 

gels; DNA in bands of interest was eluted using Pure Link Quick Gel Extraction Kit 

(Invitrogen) and cloned in the T&A cloning vector with T&A cloning kit (Yeastern Biotech) 

following manufacturer's recommendations. Positive clones were selected through PCR 

amplification using the M13 forward and M13 reverse primers. Bidirectional sequencing with 

the M13 primers was performed on an ABI PRISM 3730XL (Applied Biosystems) automatic 

sequencer. 
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Sequence analysis 

The newly sequenced repeats were analyzed together with the previously reported sequences 

of the HindIII and TaqI satDNA families from I. cyreni, I. monticola, I. galani and I. 

martinezricai (DDBJ/EMBL/GenBank accession numbers for HindIII: from KF453637 to 

KF453681; accession numbers for TaqI: from KF453682 to KF453723) (Giovannotti et al. 

2014). Multiple sequence alignment was performed with MUSCLE (Edgar 2004), using 

default parameters, as implemented in Geneious version 8.0.5 (Kearse et al. 2012). After 

visual inspection of alignments, sequences were classified into different sets according to 

shared nucleotide changes and indels. 

Intraspecific nucleotide diversity () was estimated using DnaSP v. 5 (Librado and Rozas 

2009). Net average genetic distances between groups were calculated using the Maximum 

Composite Likelihood model (Tamura et al. 2004) in MEGA v. 6.0 (Tamura et al. 2013). 

Sequence variability among satellite repeats was further investigated by performing a factorial 

correspondence analysis (FCA), carried out with Genetix v. 4.05.2 (Belkhir et al. 2004). For 

this analysis, we constructed a matrix with all the sequences, where the nucleotide present at 

each diagnostic position was coded with a unique integer (100, 120, 140 or 160). 

For the subsequent phylogenetic analysis, a consensus sequence was obtained for each 

sequence set by choosing the most frequent nucleotide at each position, except when a 

combination of dinucleotides of the three pairs CpG, CpA, and TpG was present at the same 

doublet position. In that case, the CpG dinucleotide was chosen as the consensus unless the T 

or A nucleotides were present in >70% of the sequences. A phylogenetic network of the 

consensus sequences was constructed with TCS v. 1.21 (Clement et al. 2000) using the 

statistical parsimony algorithm under the 95% parsimony criterion (Templeton et al. 1992). 

Chromosome analysis 

Metaphase chromosome spreads were prepared as described previously (Giovannotti et al. 

2014). As for I. horvathi, individuals of this species were induced to autotomize their tail tips, 

the tissues were collected in the field following the protocol by Waters et al. (2008), and 

transferred to the laboratory for the establishment of primary cell cultures. For fluorescence in 

situ hybridization (FISH) experiments we developed species-specific probes obtained by PCR 

amplification of HindIII and TaqI satDNA clones. The probes were labeled either with Cy3, 

using a PCR labeling kit (Jena Bioscience), or with FITC, using the Platinum Bright 495 

labeling kit (KREATECH Biotechnology). Slide pretreatment, denaturation, hybridization, 

post-hybridization washes and detection were performed according to Schwarzacher and 

Heslop-Harrison (2000). Images were captured using the epifluorescence microscopes (Nikon 
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Microphot-FXA; Leica Leitz DMRBE) equipped with monochrome cameras (Nikon DS-

Qi1Mc; JAI CV-M4+CL). The NIS-Elements D 3.10 (Nikon Instruments) and Leica 

CytoVision version 7.2 (Leica Microsystems) softwares were used to process the images and 

reconstruct the karyotypes. 

Results 

Isolation and characterization of satellite DNAs 

PCR amplification using primers specific for HindIII and TaqI satDNA was successful in all 

tested species, and produced a ladder-like banding pattern, which is typical for satellite DNA. 

PCR products included complete monomers and multimers (from dimers up to hexamers), 

flanked by partial monomer sequences. Only clones with complete repeat units were 

sequenced and, for further analyses, multimers were separated into individual monomers. A 

total of 187 new sequences were obtained for HindIII, whereas 109 clones were sequenced for 

TaqI. Comparison of these new sequences with the HindIII and TaqI monomers isolated from 

I. cyreni, I. monticola, I. galani and I. martinezricai in our previous study (Giovannotti et al.

2014) indicated that all of them belong to the same satDNA families. Altogether, our dataset

comprises 232 HindIII and 151 TaqI monomers from all eight Iberolacerta species, which are

likely to reflect the overall variability of the two satellite families in the genus.

Both HindIII and TaqI satDNAs are characterized by an AT bias (average AT content of 58.9%

and 59.1%, respectively) and by the occurrence of short repeat motifs such as A and T

stretches, dinucleotide TG and CA, and trinucleotide CAA and TTC (Supplementary Figs. 1a

and 1b). The size of HindIII repeats ranged between 169 and 172 bp, with the exception of two

monomers with lengths of 151 bp (IAR_99b) and 161 bp (ICY_209c) (Table 1). TaqI repeats

showed a broader range of length variation, from 155 to 191 bp (Table 1). Several indels

varying in size from 1 bp to 31 bp are the cause of the repeat length variation in this satDNA

family.

After alignment, monomers within each satDNA family were classified into subfamilies,

according to the state of diagnostic positions, characterized by nucleotide substitutions or

indels shared by at least 90% of all the members grouped in the same subfamily. The

subfamilies were designated with Roman numerals following the nomenclature previously

used in Giovannotti et al. (2014) for HindIII subfamilies I and II. Additional diagnostic

positions further divided each subfamily into several sequence groups and subgroups, denoted

by a latin letter and a numeral, respectively, after the subfamily name (Table 2).
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Table 1 (next page). Summary of repeat features of HindIII and TaqI satDNAs. Number of 

monomeric repeats sequenced (n), length of repeats (expressed in base pairs), and nucleotide 

diversities (π) ± S.E. for both satDNAs for each Iberolacerta species investigated. 

Table 2 (pages 137 and 138). Nucleotide differences among the consensus sequences of the 

different groups of a HindIII subfamilies HI, HII and HIII and b TaqI subfamilies TI and TII. 

The second row refers to base positions relative to the alignment shown in Supplementary Fig. 

1a (HindIII) and 1b (TaqI). The general consensus sequence of each satDNA was used as 

reference. Dots indicate identity with this reference sequence. 



HindIII TaqI
Species Subfamily n Repeat length Nucleotide diversity () Subfamily n Repeat length Nucleotide diversity ()

I. monticola 34 0.0151  0.0018 10 0.0600  0.0089
HI 30 171 0.0142  0.0023 TI 10 171 - 188 0.0600  0.0089
HII 4 170 0.0177  0.0060

I. galani 31 0.0331  0.0040 16 0.0489  0.0001
HI 23 171 0.0148  0.0019 TI 16 186 - 188 0.0489  0.0001
HII 8 169 - 170 0.0211  0.0082

I. martinezricai 33 0.0151  0.0018 7 0.0541  0.0103
HI 33 171 - 172 0.0151  0.0018 TI 7 187 - 188 0.0541  0.0103

I. cyreni 40 0.0356  0.0037 9 0.0406  0.0001
HI 7 0.0180  0.0030 TI 9 186 - 187 0.0406  0.0001

HIII 33 161 - 171 0.0240  0.0029
I. horvathi 12 0.0116  0.0028 33 0.1218  0.0079

HI 12 171 0.0116  0.0028 TI 31 167 - 191 0.1184  0.0083
TII 2 189 - 191 0.0699  0.0349

I. aurelioi 25 0.0396  0.0034 20  0.0976 .
HI 14 171 0.0290  0.0048 TI 1 187
HII 11 170 0.0262  0.0026 TII 19 177 - 188 0.0908  0.0074

I. aranica 22 0.0355  0.0043 34  0.1209 .
HI 7 151 - 171 0.0265  0.0055 TI 14 175 - 190 0.1082 
HII 15 170 0.0164  0.0028 TII 20 177 - 190 0.0960 

I. bonnali 35 0.0491  0.0050 22  0.1204 .
HI 17 171 0.0257  0.0027 TI 17 155 - 188 0.1060  0.0102
HII 15 169 - 170 0.0230  0.0076 TII 5 177 - 190 0.0983  0.0156
HIII 3 171 0.0195  0.0033
HI 154 0.0241  0.0015 TI 105 0.1342  0.0060
HII 53 0.0230  0.0018 TII 46 0.0961  0.0044
HIII 25 0.0254  0.0029

TOTAL 232 0.0539  0.0020 TOTAL 151 0.1567  0.0038
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1 2 3 4 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27 28 29 30 31 32 33 35
Positions 14 15 21 27 38 39 56 73 83 84 85 86 87 95 98 99 101 113 114 117 119 129 140 144 145 147 149 150 151 165

Consensus T C A T T T C A A A T T T C T G A G A T A T G C A A G A G -

HI_a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
HI_b . . . C . . . . . . . . . . . . . . . . . . . . . . . . . -
HI_c . . . . . . . . . . C . . . . . . . . . . . . . . . . . . -

HI_d1 . . . . . . T . . . . . . . . . . . . . . . . . . . . . . -
HI_d2 . . G . . . T . . . C . . . . . . . . . . . . . . . . . . -
HI_e . . . . . . . . . C C . . . . . . . . . . . . . . . . . . -
HI_f . . . . . . T . . . . . . . . . . . . C . . . . . . . . . -
HI_g . . . C . . . . . . C . . . . . . . . . . . . . . . . . . -
HI_h . . . C . . . . . C C . . . . . . . . . . . . . . . . . . -
HI_i . G . . . . . . . . C . . . . . . . . . . . . . . . . . . -
HI_j . G . . . . . . . C C . . . . . . . . . . . . . . . . . . -
HI_k . . . . . . T . . . . . . . . . . . . C . . A . . . . . . -
HI_L . . . C . . T . . . . . . . . . . . . . . . A . . . . . . -
HI_m . . . C . G T . . . . . G . . . . . . . . . . . . . . . . -
HII_a . . . . . . T . C . . . . . . . . . . C . . A - - T T G . A
HII_b . . . C . G T . C . . . . . . . G . . G . . A - - T T G . A
HII_c . . . . . . T . C . . . . . . . . . . G . . A - - T T G C A
HII_d . . G . C . . . C . . . . . . . . . . G . . A - - T T G C A
HII_e A . G . C . . . C . . . . . . . . . . G . . A - - T T G . A
HII_f . . G . C . . . C . . . . . . . . . . G . . A - - T T G . A
HII_g . . G . C . T . C . . . . . . . G . . G . . A - - T T G . A
HII_h . . G . C . . . C . . . . . . . G . . G . . A - - T T G . A
HIII_a . . . C . G T G C . . . G A C A . A T . . . . . . . . . . -
HIII_b . . . C . G T G C . . . G A C A . A T . . C A . . . . . . -
HIII_c . . . C . G T G C . . . G A C A . A G . . C A . . . . . . -
HIII_d . . . C . G T G C . . G G A C A . A G . . C A . . . . . . -
HIII_e . . . C . G T G C . . G G A C A . A G . C C A . . . . . . -

Table 2a139



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Positions 1 5 6 9 14 16 17 18 19 20 21 22 31 33 43 54 56 58 59 60 61 66 71 72 83 93 101 110 114 117 120 121 123 125 126 127 139 142 150 157163167168169170175181184 187 188

Consensus C G C G C T A A C C T A A C C T T C C A G G C G G T T G G T T G T A A A C G T C A A G T T G T G G T
TI_A1 . . . . . . C . G G . . . . T . C . . G C . T . . . . . . . . . . . . C G . . . . T . . . T G . . .
TI_A2 . . . . . . C . G G . . . . T . C . . G C . T . . . . . . . . . . . . C G . . . . T . . . T G . C .
TI_B1 . . . . . . C . G G . . . . T . C . . . C . T . A . . . . . . . . . . . G . . . . . . . . T G . . .
TI_B2 . . . . . . C . G G . . . . . . . . . . . . . . . . . . . . . . . . . . G . . . . T . . . . G . . .
TI_C1 G . T T . . C . T . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . . .
TI_C2 . . . . . . C . T . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . . .
TI_D . . . . . . . . . T . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A . . . .
TI_E . . . . . . G . . G . T G . . . . . . . . . . . . . . . . . . C . . . . . . . T . . . A A T . . . .
TI_F1 . . . . . . G . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TI_F2 . . . . . . G . . . C . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TI_G1 . . . . . . G T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TI_G2 . . . C . . G T . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TI_H1 . . . . . . . . A A . . G . . . . . . . . C . C . . . . A . C A G . . . . . . . . . . . . T . . . .
TI_H2 . . . . . . T . A A . . G . T . . . . . . C . C . . . . A . C A G . . . . . . . . . . . . T . . . .
TI_I1 . . . . . . . . A A . . G . . . . . T . T C . A . . . . A . C A . . . . . . . . . . . . . T . . . .
TI_I2 . . . . . . T . A A . . G . . . . . T . T C . A . . . . A . C A . . . . . . . . . . . . . T . . . .
TI_J1 . . . . . . . . A A . . G . . . . . . . . C . A . . . . A . C A . . . . . . A . C . . . . T . . . .
TI_J2 . . . . . . T . A A . . G . . . . . . . . C . A . . . . A . C A . . . . . . A . C . . . . T . . . .
TI_K . . . . . . . . A A . . G . . . . . . . . C . C . . . . A . C A . . . . . C . . . . . . . T G . . .
TI_L1 . . . . . . . . A A . . G . . . . . . . . C . C . . . . A . C A . . . . . . . . . . . . . T . . . .
TI_L2 . . . . . . . . A A . . G . . . . . . . . C . A . . . . A . C A . . . . . . . . . . . . . T . . . .
TI_L3 . . . . . . . . A A . . G . . . . . . . . . . A . . . . A . C A . . . . . . . . . . . . . T . . . .
TII_A . . . . T C . T . . . . . G . . . . . . . . . . . . . . . . . . . . . . G . . . - - - . . . . C . G
TII_B1 . . . . T C . T . . . . . G . C . T . . . . T . . G . . . . . . . . . . G . . . - - - . . . A . . G
TII_B2 . . . . T C . T . . . . G . . C . T . . . . T . . G . . . . . . . . . . G . . . - - - . . . A . . G
TII_C1 . . . . T T . T . . . . . G . C . T . . . . T . . G . . . . . . . . . . G . . . - - - . . . . C . G
TII_C2 . . . . T C . T . . . . . G . C . T . . . . T . . G . . . . . . . . . . G . . . - - - . . . . C . G
TII_D . . . . T C . T . G . . . G . C A T . . . . T . . G . . . . . . . . . . G . . . - - - . . . . C . G

TII_E1a . . . . T C . T . . . G . . . C . T . . . . T . . G . . . C . . . G G . . . . . . T C . . . . . . G
TII_E1b . . . . T C . T . . . G . . . C . T . . . . T . . . C . . C . . . G G . . . . . . T C . . . . . . G
TII_E2 T . . . T C . T . . . G . . . C . T . . . . T . . . C C . . . . . . . . . . . . . T . . . . . . . G
TII_F . . . . T C . T . . . . . . . C . T . . . . T . . . . . . . . . . . . . . . . . . T . . . . . . . G

TII_G1 . . . . T C . T . . . . . G . C . T . . . . T . . G . . . . . . . . . . G . . . . . . . . . A . . .
TII_G2a T . T . T C . T . . . . . A . C . T . . . . T . . G . . . . . . . . . . . . . . . T . . . . A . . G
TII_G2b T . T . T C T T . . . . . . . C . T . . . . T . . G . . . . . . . . . . . . . . . T . . . . A . . G
TII_G3 . T . . T C . T G . . . . G . C . T . . . . T . . G . . T . . . . . . . . . . . . T . . . . A . . G
TII_G4 T A . . T C . T . . . . . . . C . T . . . T T . . G . . . . . . . . . . G . . . . T . . . . A . . G

Table 2b
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Sequence variability within HindIII satDNA 

Within HindIII satDNA, we found a total of 30 diagnostic positions, which identified three 

subfamilies—namely HI, HII and HIII—and 27 sequence groups (Table 2a and Supplementary 

Fig. S1a). Their abundances ranged from 1.3% to 17% (3–39 representatives) of the examined 

sequences. Figure 1a overlies data on the abundance and distribution of HindIII sequence 

groups onto a phylogenetic tree for Iberolacerta derived from mitochondrial markers (Arribas 

et al. 2014). As evidenced in this figure, sequence groups were not equally represented in the 

different species. The Pyrenean species (I. aurelioi, I. aranica and I. bonnali) harbor a wide 

diversity of HindIII repeats, mainly belonging to subfamilies HI and HII. Only 12 monomers 

were retrieved from I. horvathi, and they are all members of subfamily HI. Similarly, 

subfamily HI is also the most abundant variant of the HindIII family in the Iberian species I. 

martinezricai, I. monticola and I. galani. A strikingly different profile of HindIII repeats was 

found in I. cyreni, also an Iberian species, which is characterized by the presence of several 

private sequence groups belonging to subfamily HIII, and one exclusive sequence group 

within subfamily HI. 

The coexistence of more than one subfamily explains the higher nucleotide diversity values 

( in species such as I. bonnali (or I. aurelioi (in comparison with the values

obtained for those species in which all their HindIII repeats belonged to a single subfamily,

i.e., I. horvathi (and I. martinezricai ((TableInterestingly, despite their

different abundances, mean  values for each subfamily were roughly similar (from 2.30% in

subfamily HII to 2.54% in subfamily HIII).

Sequence variability within TaqI satDNA 

The factorial correspondence analysis (FCA) based on diagnostic positions highlighted the 

differentiation among the three HindIII subfamilies, lending further support to our 

classification. Altogether, the three main axes of variation explain 96.53% of the observed 

variation (Fig. 2a). The most informative is axis 1 (69.70%), which identifies two main 

clusters, corresponding to subfamily HIII repeats of I. cyreni and I. bonnali on one side, and to 

subfamilies HI and HII on the other. Axis 2, which accounts for 24.60% of the observed 

variation, separates subfamilies HI and HII. Finally, axis 3, with 2.23% of the observed 

variation, probably corresponds to sequence heterogeneity within each subfamily. The 

clustering of HindIII repeats revealed by the FCA matches the estimates of interspecies and 

inter-subfamilies net genetic distances, shown in Table 3a. Monomers of subfamily HIII are 



Verónica Rojo Orons 

144 

the most divergent, with average genetic distances of 7.50% and 9.90% from subfamily HI and 

HII, respectively. These values are substantially higher than the average distance between 

subfamilies HI and HII (around 4.0%). When I. cyreni is excluded from the analysis, pair-wise 

interspecies genetic distances within each subfamily are all very low and uncorrelated with 

relative divergence times between species, with average values of 1.0% within subfamily HIII, 

0.34% within subfamily HII, and 0.33% within subfamily HI. Net genetic distances between 

HI repeats involving I. cyreni are always considerably higher (from 2.0% between I. cyreni 

and I. aranica to 3.40% between I. cyreni and I. horvathi). 

From the alignment of TaqI sequences we identified a total of 49 diagnostic positions, which 

defined two main subfamilies—namely TI and TII—and 37 sequence groups, whose 

abundances ranged from 1.3% to 8.5% (2–13 representatives) of the examined sequences 

(Table 2b and Supplementary Fig. S1b). 

In general, the species of the Iberian clade were characterized by the presence of TaqI repeats 

belonging only to subfamily TI (Fig. 1b), with a substantial proportion of private sequence 

groups (four groups, comprising 15 out of 42 sequences). Conversely, subfamily TII is 

essentially characteristic of the subgenus Pyrenesaura, although it has been residually 

observed also in I. horvathi. This subfamily appears to be the most abundant variant in the 

genomes of I. aranica and, above all, I. aurelioi, which show both species-specific and shared 

sequence groups. The sampled loci from I. bonnali and I. horvathi contain mostly T1 repeats. 

However, the clustering pattern of TI repeats differs markedly between the two species: while 

all the monomers retrieved from I. bonnali were grouped together with monomers from other 

species, I. horvathi shows the highest proportion of species-specific repeats (25 out of 33), 

allocated to six private sequence groups. 

As expected from the distribution of subfamilies TI and TII in the genomes of the Iberolacerta 

species, intraspecific nucleotide diversity values are higher for I. horvathi and the Pyrenean 

species, which harbor both types of TaqI repeats in their genomes (Table 1). When each 

subfamily is analyzed separately,  values within subfamily TI are two to three-fold greater in 

these species than in the species of the Iberian clade (from 4.06% in I. cyreni to 11.84% in I. 

horvathi). High  values were also obtained for subfamily TII in those species with a large 

number of monomers examined (9.08% in I. aurelioi, and 9.60% in I. aranica). 
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a) 

b) 

Fig. 2. Three-dimensional representation of a Factorial Correspondence Analysis 

based on monomeric sequences of HindIII (a) and TaqI (b) satDNAs. 
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The factorial analysis of TaqI monomers identified a main axis of variation (axis 1 at Fig. 2b, 

explaining 48.30% of the observed variation), corresponding to the separation between three 

groups of repeats: 1) subfamily TII (i.e., essentially Pyrenesaura); 2) a subset of subfamily TI, 

including all the monomers of Iberian species and a few monomers of I. bonnali; and 3) a 

subset of subfamily TI, made up of monomers from I. horvathi, I. aranica and I. bonnali. Axis 

2 in the FCA, which accounts for 25.70% of the total variation, separates a fourth group of 

repeats, comprising the remaining TI monomers of I. horvathi. Net genetic distances between 

repeats from the different species (Table 3b) give additional support to the FCA results. 

Leaving aside the comparisons involving the single monomer of TI in I. aurelioi, larger 

distances between T1 repeats correspond to pairs of the Iberian species with both I. aranica 

(4.70%–5.10%) and, above all, I. horvathi (6.10%–7.0%). As for the TII repeats, all the pair-

wise comparisons, involving the subgenus Pyrenesaura and I. horvathi, produce rather low 

values, (0.0%–1.30%). 

Organization of consecutive monomeric units 

The cloning and sequencing of multimeric products allowed us to characterize the organization 

of consecutive monomeric repeats. In both satDNA families, and in all the species analyzed, 

we observed that adjacent monomers in a satellite array usually belong to different sequence 

groups, and even to different subfamilies (for a list of all HindIII and TaqI composite arrays 

sampled in the Iberolacerta species, see Supplementary Tables S2 and S3, respectively). 

Phylogenetic analysis 

The statistical parsimony network obtained for HindIII satDNA showed a high degree of 

reticulation among the members of subfamily HI (Fig. 3a). This pattern suggests that 

rearrangements due to recombination events are an important force generating new monomers 

in subfamily HI. According to this phylogenetic reconstruction, HI—the most widespread 

subfamily among the Iberolacerta species—was found to occupy the central position of the 

parsimony network. Two sequence groups within this subfamily, HI_K and HI_M, branched 

into two separate lineages, corresponding to subfamilies HII and HIII, respectively. In contrast 

to subfamily HI, no evidence for recombination events has been found within subfamilies HII 

and HIII. 
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Fig. 3. Statistical parsimony network constructed from the consensus sequences of the 

different sequence groups of a HindIII satDNA and b TaqI satDNA. 

a)
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Fig. 3 (continued). 

b) 

In the network of TaqI satDNA, all sequence groups converge on a group belonging to 

subfamily T1 (T1_ FI, Fig. 3b). The network shows a major separation of four clusters, 

connected to group TI_F1 by a few mutational steps. Three of them (T1_F2, T1_C2 and 

T1_G1, together with their related variants) include sequences only found in I. horvathi and in 

the subgenus Pyrenesaura. All sequence groups belonging to subfamily TII occupy a 

peripheral position within cluster G1. The extensive diversification within subfamily TII has 

been promoted, in some cases, by recombination events that created new monomer variants 

(e.g., TII_E1b or TII_G2a). Within the fourth cluster, the prolific lineage TI_L3 includes all 

the sequence groups characteristic of the Iberian clade. 
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Chromosomal location of HindIII and TaqI satDNA families 

FISH with HindIII satDNA probe on metaphase chromosomes of I. monticola and I. galani 

revealed that this repetitive element is present at centromeres of all the 36 chromosomes of the 

diploid complement (Fig. 4; Giovannotti et al. 2014). FISH on female metaphases of I. 

bonnali, carried out in this work, showed hybridization signals in the centromeric regions of 

all the 23 chromosomes of the karyotype, although with variable signal strength in different 

chromosome pairs (Fig. 4). Moreover, the overall intensity of HindIII signals in I. bonnali was 

noticeably lower than in I. monticola and I. galani. No hybridization signals were observed in 

the chromosomes of I. horvathi.   

Fig. 4. Hybridization pattern of the HindIII probe in the karyotypes of I. monticola, I. 

galani and I. bonnali. Scale bar = 10 μm. 

FISH with TaqI satDNA probe in I. monticola and I. galani produced bright signals in 

interstitial position in a subset of 20 and 18 chromosomes, respectively (Fig. 5). In I. bonnali, 

similarly intense signals were detected interstitially on both arms of 10 meta-/submetacentric 

chromosomes. In some metaphases, an additional faint signal could be observed in a medium-

sized chromosome pair (Fig. 5). In I. horvathi, strong hybridization signals were also observed 

in interstitial position, but just in six chromosomes. However, after increased exposure times, 

10 additional chromosomes appeared weakly labeled (Fig. 5). 
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Fig. 5. Hybridization pattern of the TaqI probe in the karyotypes of I. monticola, I. 

galani, I. bonnali and I. horvathi. FISH signals on I. horvathi chromosomes are 

shown at standard (a) and increased (b) exposure times. Scale bar = 10 μm. 

Discussion 

The turnover rate of a satDNA family is a complex feature that depends on many parameters, 

such interchromosomal and intrachromosomal recombination rates, copy number and long-

range organization of repeat units, genome location and distribution, putative functional 

interactions, reproductive mode and population factors (Strachan et al. 1985; Dover 2002; 

Luchetti et al. 2003; Robles et al. 2004; Meštrović et al. 2006; Kuhn et al. 2008; Navajas-

Pérez et al. 2009; Giovannotti et al. 2013). In consequence, sequence dynamics of satDNA 

families may differ not only among families, but also, for a given family, among genomic 
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regions (Kuhn et al. 2011), or among populations (Wei et al. 2014), species, or higher 

taxonomic groups (e.g., Macas et al. 2006; Kuhn et al. 2008; Martinsen et al. 2009; Plohl et al. 

2010). 

In agreement with Giovannotti et al. (2014), the results of the present work show that overall 

variability of TaqI repeats in the whole genus Iberolacerta is on average three times higher 

than the variability of HindIII repeats, which suggests a faster homogenization/fixation rate for 

the latter satDNA family. However, the detailed characterization of both satDNA families in all 

eight Iberolacerta species reveals that their evolutionary patterns are more complex than 

previously anticipated. The presence of HindIII_HI in all the species, and its central position in 

the phylogenetic network, suggests that this is the most ancestral variant of HindIII satDNA, 

from which subfamilies HII and HIII were derived. Interestingly, with the exception of I. 

cyreni, no intraspecific homogenization for any particular subfamily was detected in our study, 

and most different sequence groups of subfamilies HI and HII are widespread and shared by 

even distantly related species. Indeed, interspecific genetic distances within each subfamily are 

substantially lower than intraspecific genetic distances between repeats belonging to different 

subfamilies. On the contrary, I. cyreni shows a high proportion of private sequence groups 

belonging to subfamily HIII, and a well-differentiated subset of HI repeats, which explains the 

evidence of concerted evolution found for this species in our previous study. However, the 

finding of HIII repeats also in I. bonnali indicates that this subfamily is not exclusive of I. 

cyreni, but was already present in the common ancestral library of HindIII variants. 

Combining these data with the results of FISH experiments, the most parsimonious 

interpretation of HindIII satDNA evolution is that the diversification of HindIII repeats—

which generated most of the extant variants—took place in the common ancestor of 

Iberolacerta, before species radiation, i.e., from 11.6 to 15.6 mya (Arribas et al. 2014). In the 

ancestral species, HindIII satDNA might have been widely distributed in the centromeres of all 

chromosome pairs, with a subsequent decrease in copy number in I. horvathi and, at least, in 

the Pyrenean I. bonnali. In the latter species, and maybe also in the other two Pyrenean taxa, 

the reduced amounts of HindIII satDNA might obey to the possible involvement of this 

centromeric element in the Robertsonian fusions that originated the biarmed chromosomes 

characteristic of Pyrenesaura from the ancestral acrocentric karyotype, as has been suggested 

for other centromeric repeats in marsupials (Bulazel et al. 2007). Alternatively, HindIII could 

represent a minor satDNA family in the centromeres of the ancestral species, which was 

differentially amplified in the Iberian clade. In either case, the turnover of HindIII repeats in 

the different lineages mainly involved the same pool of “old” repeat variants. Long-term 



Verónica Rojo Orons 

152 

conservation of ancestral repeats could be a consequence of selective constraints imposed on 

functional motifs or structural features of satellite monomers (see, for example, Meštrović et 

al. 2006; Plohl et al. 2012), involved in any of the roles ascribed to satDNAs (reviewed in 

Ugarković 2009). Thus, even if we did not find any evidence of function in HindIII satDNA, 

selection may have favored the maintenance of some repeat variants and/or limited the 

diversification of this repetitive element. Nevertheless, the loss of HindIII repeats in I. 

horvathi and I. bonnali (or, alternatively, the amplification in the Iberian species) suggests that, 

even if functional, a satellite family may be replaced by another in a relatively short 

evolutionary time. 

Actually, and in contrast to the highly conserved function of the centromers, the rapid 

evolution and extensive changes in copy number of satDNAs is a general characteristic of 

centromeric regions (Henikoff et al. 2001). The detection of recombinant sequences within 

subfamily HI suggests that mechanisms such as unequal crossovers between sister chromatids 

and gene conversion may have been an important source of new sequence variants in HindIII 

satDNA (e.g. Smith 1976; Talbert and Henikoff 2010). Moreover, unequal crossover occurring 

between highly homogeneous arrays can induce copy number alterations of satDNA repeats, 

as those observed in the Iberolacerta species (Stephan 1986). This fast evolution of 

centromeric satDNAs can be linked with reproductive isolation and speciation (Bachmann et 

al. 1989, 1993). For example, divergence of centromeric satDNA in Drosophila species can 

inhibit chromosome segregation in hybrids and thus directly cause hybrid incompatibilies and 

postzygotic isolation (Ferree and Barbash 2009). Likewise, the high copy number 

polymorphisms and rapid shifts in centromere sequence composition could have contributed 

and even triggered species radiation within Iberolacerta. 

The TaqI satDNA family has a very different evolutionary history from the HindIII family, and 

appears to evolve much faster in the lineage that leads to I. horvathi. According to the 

parsimony network, TaqI_TI, the most widespread subfamily among the analyzed species, 

would also be the most ancestral variant, from which subfamily TII was derived. The 

phylogenetic distribution of the different sequence sets suggests that both subfamilies were 

present in the common ancestor of Iberolacerta. Subsequently, subfamily TII spread in the 

Pyrenean species, whereas it was progressively lost in I. horvathi, and maybe even completely 

removed from the genomes of the Iberian species. Altogether, TI repeats retrieved from I. 

horvathi show a general pattern of concerted evolution, with high interspecific distance values 

in all pairwise comparisons and a large subset of species-specific sequence groups. The 

allocation of these private groups (e.g., TI_A2 or TI_C1) in terminal clades of the statistical 
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parsimony network indicates that they probably arose after the early separation of I. horvathi 

from the remaining species, about 11.5 mya (9.6–13.7) (Arribas et al. 2014). The evolution of 

TaqI satDNA in I. horvathi was probably accompanied by a reduction in the abundance and 

chromosomal distribution, as inferred from the results of FISH experiments. TaqI satDNA also 

seems to evolve in concert in the Iberian clade, but with a distinct pattern from that found in I. 

horvathi. In this case, the profile of TI repeats and the low levels of nucleotide diversity 

indicate that concerted evolution in the Iberian clade involved the preferential homogenization 

of a reduced subset of TaqI variants, all of which evolved from a single sequence lineage, 

TI_L3. After cladogenesis, however, the rate at which TI repeats evolve within the Iberian 

clade is presumably low, since TaqI sequences are poorly differentiated between the four taxa 

and we found almost no species-specific sequence sets. 

In contrast with I. horvathi and in the Iberian species, the turnover process of TaqI satDNA 

seems to be remarkably slow in the Pyrenean I. bonnali. TaqI repeats from this species belong 

mainly to “old” sequence sets of subfamily TI and lack species-specific diagnostic positions, 

which indicates that most of the variability found in I. bonnali obeys to synapomorphisms, and 

that TaqI repeats have been evolving with a low rate of sequence change after speciation. 

Conversely, the evolution of TaqI satDNA in the other two Pyrenean species, I. aranica and I. 

aurelioi, is characterized by the amplification of subfamily TII. Phylogenetic studies suggest 

that the three species of the Pyrenean clade originated in rapid succession, though I. bonnali 

probably split first, roughly 3.8 mya (2.7–4.9) (Arribas et al. 2006, 2014). According to this 

phylogenetic reconstruction, the amplification of subfamily TII in the genomes of I. aranica 

and I. aurelioi may have occurred in a short time, after the separation of I bonnali and before 

the divergence of both species, ca. 3.3 mya (2.3–4.3). A rapid expansion of subfamily TII 

agrees well with the high levels of intraspecific nucleotide diversity and interspecific sequence 

conservation observed for this subfamily in both species. 

The different turnover rates of TaqI repeats among the Pyrenean species, I. horvathi and the 

Iberian species, could be related to differences in their karyotypes. It is possible that 

interchromosomal exchange and homogenization between the asymmetric meta-

/submetacentric chromosomes of the Pyrenean species is more limited than in the species with 

all acrocentric chromosomes, more homogeneous in shape and size. Similar considerations 

have been proposed to explain the lower evolutionary rate of satDNAs in sturgeons as 

compared to sparids (de la Herrán et al. 2001). Limited interchromosomal exchange would 

lead to a progressive compartmentalization of satellite repeats, followed by a reduction in their 

interactions and, eventually, by a lack of homogenization of different sequence variants. 
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However, this hypothesis is at least partially contradicted by our analysis of consecutive 

monomeric units, which revealed that, in both HindIII and TaqI satDNA families, adjacent 

repeats are not necessarily more similar than are repeats selected at random, and that members 

of different sequence groups or even subfamilies can be interspersed in the same array. 

In fact, this pattern of composite repeats may be a key factor explaining the disparate turnover 

rates of each satDNA family in different species. In eukaryotes, homologous recombination 

within or between chromosomes can be inhibited by only one mutation per 200 bp (Nijman 

and Lenstra 2001, and references therein). Likewise, mutations in new monomer variants 

would inhibit the interactions of repeat units, leading to sequence diversification, divergent 

evolution and the formation of satDNA subfamilies. Accordingly, our estimates of intraspecific 

genetic distances between repeats belonging to different subfamilies suggest that each 

subfamily within HindIII and TaqI satDNAs is evolving independently. In this context, the 

intermixing between subfamilies HI and HII within HindIII arrays in most of the species 

analyzed, and between TaqI subfamilies TI and TII in the Pyrenean taxa, would strongly 

reduce recombination and homogenization within each subfamily, resulting in the pattern of 

non-concerted evolution observed in our study. Conversely, the amplification of subfamily 

HIII in I. cyreni, and the preponderance of subfamily TI in I. horvathi and the Iberian species, 

allows a more efficient homogenization of HindIII and TaqI repeats, respectively, which 

translates into the overall patterns of concerted evolution observed for these satDNA families 

in the species mentioned above. 

Taken together, our results on the dynamics of HindIII and TaqI satDNAs in Iberolacerta are 

congruent with proposed models of satDNA evolution and life history, intended to explain the 

considerable fluctuations in copy number and variability of satDNAs shared by related species 

(Nijman and Lenstra 2001; Plohl et al. 2010). They also support the idea that the “library 

model” may be extended to monomer variants of the same satDNA family, which were already 

present in a common ancestor and are currently distributed in related species in variant copy 

numbers (Cesari et al., 2003). As observed in Iberolacerta, this particular evolutionary pattern 

may result in species-specific profiles of satDNAs which do not reflect the phylogenetic 

relationships among taxa. 

In conclusion, an in-depth analysis of intragenomic variability of HindIII and TaqI satDNAs in 

Iberolacerta revealed two disparate evolutionary histories which, nevertheless, showed some 

common traits: (i) each satDNA family is made up of a library of monomer variants or 

subfamilies shared by related species; (ii) species-specific profiles of satellite repeats are 

shaped by expansions and/or contractions of different variants from the library; (iii) different 
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turnover rates, even among closely related species, result in great differences in overall 

sequence homogeneity, and in concerted or non-concerted evolution patterns. Contrasting 

turnover rates are possibly related to genomic constraints such as karyotype architecture and 

the interspersed organization of diverging repeat variants in satellite arrays, and maybe also to 

functional interactions. On the whole, these satDNA families constitute highly dynamic 

systems, which may have a critical role on the evolution of genome and species. Further 

studies aimed at investigating the genome-wide variability and organization of reptilian 

satDNAs may not only be useful to test current hypothesis and identify mechanisms 

influencing the evolution of this genomic component, but also to improve its application as a 

molecular marker in phylogenetic studies. 
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Supplementary Material 

 

 
Table S1. Iberolacerta species and populations included in this study. 

 

 

 

Species Populations Locality Number of 
specimens 

I. horvathi 2 Sella Nevea, Carnic Alps, Udine (Italy) 
Passo di Pramollo, Carnic Alps, Udine (Italy) 2 

I. bonnali 2 
Pico de Urdiceto, Pirineos, Huesca (Spain) 
Estany de Cavallers, Aigüestortes, Pirineos, Cataluña 
(Spain) 

2 

I. aranica 2 Estany de Liat, Vall d'Aran, Pirineos, Cataluña (Spain) 
Combe de la Montanyole, Pirineos (France) 2 

I aurelioi 2 Pica d'Estats, Pirineos, Cataluña (Spain) 
Circ de Comapedrosa, Pirineos (Andorra) 2 

I. cyreni 3 
Navacerrada, Sierra de Guadarrama, Segovia-Madrid 
(Spain), Pico Zapatero, Sierra de la Paramera, Ávila (Spain) 
Puerto de Peña Negra, Sierra de Villafranca, Ávila (Spain) 

3 

I. monticola 1 Fragas do Eume, A Capela, Galicia (Spain) 4 

I. galani 1 A Ponte, Pena Trevinca, A Veiga, Galicia, Spain 4 
I. martinezricai 1 Puerto El Portillo, Salamanca (Spain) 1 
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Fig. S1a. Sequence alignment of consensus sequences of the different HindIII 
sequence groups. The first line shows the general consensus for all the sequences of 
each satDNA. Diagnostic positions for each group are indicated by coloured shading. 

* 20 * 40 * 60
AGCTTATTTGCGCtcAAATA-CACAA-TGTGCCCAAAt-GCAAAACGACGCACAA-AAGC

HI_A   : AGCTTATTTGCGCTCAAATAACACAATTGTGCCCAAATTGCAAAACGACGCACAACAAGC :  60 
HI_B   : AGCTTATTTGCGCTCAAATAACACAACTGTGCCCAAATTGCAAAACGACGCACAACAAGC :  60 
HI_C   : AGCTTATTTGCGCTCAAATAACACAATTGTGCCCAAATTGCAAAACGACGCACAACAAGC :  60 
HI_D1  : AGCTTATTTGCGCTCAAATAACACAATTGTGCCCAAATTGCAAAACGACGCACAATAAGC :  60 
HI_D2  : AGCTTATTTGCGCTCAAATAGCACAATTGTGCCCAAATTGCAAAACGACGCACAATAAGC :  60 
HI_E   : AGCTTATTTGCGCTCAAATAACACAATTGTGCCCAAATTGCAAAACGACGCACAACAAGC :  60 
HI_F   : AGCTTATTTGCGCTCAAATAACACAATTGTGCCCAAATTGCAAAACGACGCACAATAAGC :  60 
HI_G   : AGCTTATTTGCGCTCAAATAACACAACTGTGCCCAAATTGCAAAACGACGCACAACAAGC :  60 
HI_H   : AGCTTATTTGCGCTCAAATAACACAACTGTGCCCAAATTGCAAAACGACGCACAACAAGC :  60 
HI_I   : AGCTTATTTGCGCTGAAATAACACAATTGTGCCCAAATTGCAAAACGACGCACAACAAGC :  60 
HI_J   : AGCTTATTTGCGCTGAAATAACACAATTGTGCCCAAATTGCAAAACGACGCACAACAAGC :  60 
HI_K   : AGCTTATTTGCGCTCAAATAACACAATTGTGCCCAAATTGCAAAACGACGCACAATAAGC :  60 
HI_L   : AGCTTATTTGCGCTCAAATAACACAACTGTGCCCAAATTGCAAAACGACGCACAATAAGC :  60 
HI_M   : AGCTTATTTGCGCTCAAATAACACAACTGTGCCCAAATGGCAAAACGACGCACAATAAGC :  60 
HII_A  : AGCTTATTTGCGCTCAAATAACACAATTGTGCCCAAATTGCAAAACGACGCACAATAAGC :  60 
HII_B  : AGCTTATTTGCGCTCAAATAACACAACTGTGCCCAAATGGCAAAACGACGCACAATAAGC :  60 
HII_C  : AGCTTATTTGCGCTCAAATAACACAATTGTGCCCAAATTGCAAAACGACGCACAATAAGC :  60 
HII_D  : AGCTTATTTGCGCTCAAATAGCACAATTGTGCCCAAACTGCAAAACGACGCACAACAAGC :  60 
HII_E  : AGCTTATTTGCGCACAAATAGCACAATTGTGCCCAAACTGCAAAACGACGCACAACAAGC :  60 
HII_F  : AGCTTATTTGCGCTCAAATAGCACAATTGTGCCCAAACTGCAAAACGACGCACAACAAGC :  60 
HII_G  : AGCTTATTTGCGCTCAAATAGCACAATTGTGCCCAAACTGCAAAACGACGCACAATAAGC :  60 
HII_H  : AGCTTATTTGCGCTCAAATAGCACAATTGTGCCCAAACTGCAAAACGACGCACAACAAGC :  60 
HIII_A : AGCTTATTTGCGCTCAAATAACACAACTGTGCCCAAATGGCAAAACGACGCACAATAAGC :  60 
HIII_B : AGCTTATTTGCGCTCAAATAACACAACTGTGCCCAAATGGCAAAACGACGCACAATAAGC :  60 
HIII_C : AGCTTATTTGCGCTCAAATAACACAACTGTGCCCAAATGGCAAAACGACGCACAATAAGC :  60 
HIII_D : AGCTTATTTGCGCTCAAATAACACAACTGTGCCCAAATGGCAAAACGACGCACAATAAGC :  60 
HIII_E : AGCTTATTTGCGCTCAAATAACACAACTGTGCCCAAATGGCAAAACGACGCACAATAAGC :  60 
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* 80 * 100 * 120
CTCAGAATGATGaGAATAAGCCaa-t-AGCGTCCcAAtgCaTGCTGCACACAgaAA-CaG

HI_A   : CTCAGAATGATGAGAATAAGCCAATTTAGCGTCCCAATGCATGCTGCACACAGAAATCAG : 120 
HI_B   : CTCAGAATGATGAGAATAAGCCAATTTAGCGTCCCAATGCATGCTGCACACAGAAATCAG : 120 
HI_C   : CTCAGAATGATGAGAATAAGCCAACTTAGCGTCCCAATGCATGCTGCACACAGAAATCAG : 120 
HI_D1  : CTCAGAATGATGAGAATAAGCCAATTTAGCGTCCCAATGCATGCTGCACACAGAAATCAG : 120 
HI_D2  : CTCAGAATGATGAGAATAAGCCAACTTAGCGTCCCAATGCATGCTGCACACAGAAATCAG : 120 
HI_E   : CTCAGAATGATGAGAATAAGCCACCTTAGCGTCCCAATGCATGCTGCACACAGAAATCAG : 120 
HI_F   : CTCAGAATGATGAGAATAAGCCAATTTAGCGTCCCAATGCATGCTGCACACAGAAACCAG : 120 
HI_G   : CTCAGAATGATGAGAATAAGCCAACTTAGCGTCCCAATGCATGCTGCACACAGAAATCAG : 120 
HI_H   : CTCAGAATGATGAGAATAAGCCACCTTAGCGTCCCAATGCATGCTGCACACAGAAATCAG : 120 
HI_I   : CTCAGAATGATGAGAATAAGCCAACTTAGCGTCCCAATGCATGCTGCACACAGAAATCAG : 120 
HI_J   : CTCAGAATGATGAGAATAAGCCACCTTAGCGTCCCAATGCATGCTGCACACAGAAATCAG : 120 
HI_K   : CTCAGAATGATGAGAATAAGCCAATTTAGCGTCCCAATGCATGCTGCACACAGAAACCAG : 120 
HI_L   : CTCAGAATGATGAGAATAAGCCAATTTAGCGTCCCAATGCATGCTGCACACAGAAATCAG : 120 
HI_M   : CTCAGAATGATGAGAATAAGCCAATTGAGCGTCCCAATGCATGCTGCACACAGAAATCAG : 120 
HII_A  : CTCAGAATGATGAGAATAAGCCAATTTAGCGTCCCAATGCATGCTGCACACAGAAACCAG : 120 
HII_B  : CTCAGAATGATGAGAATAAGCCAATTTAGCGTCCCAATGCGTGCTGCACACAGAAAGCAG : 120 
HII_C  : CTCAGAATGATGAGAATAAGCCAATTTAGCGTCCCAATGCATGCTGCACACAGAAAGCAG : 120 
HII_D  : CTCAGAATGATGAGAATAAGCCAATTTAGCGTCCCAATGCATGCTGCACACAGAAAGCAG : 120 
HII_E  : CTCAGAATGATGAGAATAAGCCAATTTAGCGTCCCAATGCATGCTGCACACAGAAAGCAG : 120 
HII_F  : CTCAGAATGATGAGAATAAGCCAATTTAGCGTCCCAATGCATGCTGCACACAGAAAGCAG : 120 
HII_G  : CTCAGAATGATGAGAATAAGCCAATTTAGCGTCCCAATGCGTGCTGCACACAGAAAGCAG : 120 
HII_H  : CTCAGAATGATGAGAATAAGCCAATTTAGCGTCCCAATGCGTGCTGCACACAGAAAGCAG : 120 
HIII_A : CTCAGAATGATGGGAATAAGCCCATTGAGCGTCCAAACACATGCTGCACACAATAATCAG : 120 
HIII_B : CTCAGAATGATGGGAATAAGCCCATTGAGCGTCCAAACACATGCTGCACACAATAATCAG : 120 
HIII_C : CTCAGAATGATGGGAATAAGCCCATTGAGCGTCCAAACACATGCTGCACACAAGAATCAG : 120 
HIII_D : CTCAGAATGATGGGAATAAGCCCATGGAGCGTCCAAACACATGCTGCACACAAGAATCAG : 120 
HIII_E : CTCAGAATGATGGGAATAAGCCCATGGAGCGTCCAAACACATGCTGCACACAAGAATCCG : 120 

*       140         *       160         *
TGTTTCTCtTGCTTATTTC-CTC—A—-T-—gTGTTTTACAGTTG-AAAAGCT

HI_A   : TGTTTCTCTTGCTTATTTCGCTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HI_B   : TGTTTCTCTTGCTTATTTCGCTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HI_C   : TGTTTCTCTTGCTTATTTCGCTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HI_D1  : TGTTTCTCTTGCTTATTTCGCTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HI_D2  : TGTTTCTCTTGCTTATTTCGCTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HI_E   : TGTTTCTCTTGCTTATTTCGCTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HI_F   : TGTTTCTCTTGCTTATTTCGCTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HI_G   : TGTTTCTCTTGCTTATTTCGCTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HI_H   : TGTTTCTCTTGCTTATTTCGCTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HI_I   : TGTTTCTCTTGCTTATTTCGCTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HI_J   : TGTTTCTCTTGCTTATTTCGCTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HI_K   : TGTTTCTCTTGCTTATTTCACTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HI_L   : TGTTTCTCTTGCTTATTTCACTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HI_M   : TGTTTCTCTTGCTTATTTCGCTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HII_A  : TGTTTCTCTTGCTTATTTCACTC--ATTTGGTGTTTTACAGTTGAAAAAGCT : 170 
HII_B  : TGTTTCTCTTGCTTATTTCACTC--ATTTGGTGTTTTACAGTTGAAAAAGCT : 170 
HII_C  : TGTTTCTCTTGCTTATTTCACTC--ATTTGCTGTTTTACAGTTGAAAAAGCT : 170 
HII_D  : TGTTTCTCTTGCTTATTTCACTC--ATTTGCTGTTTTACAGTTGAAAAAGCT : 170 
HII_E  : TGTTTCTCTTGCTTATTTCACTC--ATTTGGTGTTTTACAGTTGAAAAAGCT : 170 
HII_F  : TGTTTCTCTTGCTTATTTCACTC--ATTTGGTGTTTTACAGTTGAAAAAGCT : 170 
HII_G  : TGTTTCTCTTGCTTATTTCACTC--ATTTGGTGTTTTACAGTTGAAAAAGCT : 170 
HII_H  : TGTTTCTCTTGCTTATTTCACTC--ATTTGGTGTTTTACAGTTGAAAAAGCT : 170 
HIII_A : TGTTTCTCTTGCTTATTTCGCTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HIII_B : TGTTTCTCCTGCTTATTTCACTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HIII_C : TGTTTCTCCTGCTTATTTCACTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HIII_D : TGTTTCTCCTGCTTATTTCACTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
HIII_E : TGTTTCTCCTGCTTATTTCACTCCAAATGAGTGTTTTACAGTTG-AAAAGCT : 171 
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Fig. S1b. Sequence alignment of consensus sequences of the different TaqI sequence 

groups. The first line shows the general consensus for all the sequences of each satDNA. 

Diagnostic positions for each group are indicated by coloured shading. 

* 20 * 40 * 60
cGAggcCTgATTT-T-----taTGATAaAA-C-cTtCTGTTTccACcGCCAAA-CtT-ca

TI_A1   : CGAGGCCTGATTTCTTCAGGTATGATAAAAACCCTTCTGTTTTCACCGCCAAATCCTCCG :  60 
TI_A2   : CGAGGCCTGATTTCTTCAGGTATGATAAAAACCCTTCTGTTTTCACCGCCAAATCCTCCG :  60 
TI_B1   : CGAGGCCTGATTTCTTCAGGTATGATAAAAACCCTTCTGTTTTCACTGCCAAATCCTCCA :  60 
TI_B2   : CGAGGCCTGATTTCTTCAGGTATGATAAAAACCCTTCTGTTTCCACCGCCAAATCTTCCA :  60 
TI_C1   : GGAGGTCTTATTTCTTCATCTGTGATAAAAACCCTTCTGTTTCCACCGCCAAATCTTCCA :  60 
TI_C2   : CGAGGCCTGATTTCTTCATCTATGATAAAAGCCCTTCTGTTTCCACCGCCAAATCTTCCA :  60 
TI_D    : CGAGGCCTGATTTCTTAACTTATGATAAAAGCCCTTCTGTTTCCACCGCCAAATCTTCCA :  60 
TI_E    : CGAGGCCTGATTTCTTGACGTTTGATAAAAGCCCTTCTGTTTCCACAGCCAAATCTTCCA :  60 
TI_F1   : CGAGGCCTGATTTCTTGACCTATGATAAAAGCCCTTCTGTTTCCACCGCCAAATCTTCCA :  60 
TI_F2   : CGAAGCCTGATTTCTTGACCCATGATAAAAGCCCTTCTGTTTCCACCGCCAAATCTTCCA :  60 
TI_G1   : CGATGCCTGATTTCTTGTCCTATGATAAAAACCCTTCTGTTTCCACCGCCAAATCTTCCA :  60 
TI_G2   : CGAGGCCTCATTTCTTGTCCTATGATAAAAACCCTTCTGTTTCCACCGCCAAATCCTCCA :  60 
TI_H1   : CGAGGCCTGATTTCTTAAAATATGATAAAAGCCCTTCTGTTTCCACCGCCAAATCTTCCA :  60 
TI_H2   : CGAGGCCTGATTTCTTTAAATATGATAAAAGCCCTTCTGTTTTCACCGCCAAATCTTCCA :  60 
TI_I1   : CGAGGCCTGATTTCTTAAAATATGATAAAAGCCCTTCTGTTTCCACCGCCAAATCTTCTA :  60 
T1_I2   : CGAGGCCTGATTTCTTTAAATATGATAAAAGCCCTTCTGTTTCCACCGCCAAATCTTCTA :  60 
TI_J1   : CGAGGCCTGATTTCTTAAAATATGATAAAAGCCCTTCTGTTTCCACCGCCAAATCTTCCA :  60 
TI_J2   : CGAGGCCTGATTTCTTTAAATATGATAAAAGCCCTTCTGTTTCCACCGCCAAATCTTCCA :  60 
TI_K    : CGAGGCCTGATTTCTTAAAATATGATAAAAGCCCTTCTGTTTCCACCGCCAAATCTTCCA :  60 
TI_L1   : CGAGGCCTGATTTCTTAAAATATGATAAAAGCCCTTCTGTTTCCACCGCCAAATCTTCCA :  60 
TI_L2   : CGAGGCCTGATTTCTTAAAATATGATAAAAGCCCTTCTGTTTCCACCGCCAAATCTTCCA :  60 
TI_L3   : CGAGGCCTGATTTCTTAAAATATGATAAAAGCCCTTCTGTTTCCACCGCCAAATCTTCCA :  60 
TII_A   : CGAGGCCTGATTTTTCATCCTATGATAAAAACGCTTCTGTTTCCACCGCCAAATCTTCCA :  60 
TII_B1  : CGAGGCCTGATTTTTCATCCTATGATAAAAACGCTTCTGTTTCCACCGCCAAACCTTTCA :  60 
TII_B2  : CGAGGCCTGATTTTTCATCCTATGATAAAAGCCCTTCTGTTTCCACCGCCAAACCTTTCA :  60 
TII_C1  : CGAGGCCTGATTTTTTATCCTATGATAAAAACGCTTCTGTTTCCACCGCCAAACCTTTCA :  60 
TII_C2  : CGAGGCCTGATTTTTCATCCTATGATAAAAACGCTTCTGTTTCCACCGCCAAACCTTTCA :  60 
TII_D   : CGAGGCCTGATTTTTCATCGTATGATAAAAACGCTTCTGTTTCCACCGCCAAACCATTCA :  60 
TII_E1a : CGAGGCCTGATTTTTCATCCTGTGATAAAAACCCTTCTGTTTCCACCGCCAAACCTTTCA :  60 
TII_E1b : CGAGGCCTGATTTTTCATCCTGTGATAAAAACCCTTCTGTTTCCACCGCCAAACCTTTCA :  60 
TII_E2  : TGAGGCCTGATTTTTCATCCTGTGATAGAAACCTTCCTGTTTCCACCGCCAAACCTTTCA :  60 
TII_F   : CGAGGCCTGATTTTTCATCCTATGATAAAAACCCTTCTGTTTCCACCGCCAAACCTTTCA :  60 
TII_G1  : CGAGGCCTGATTTTTCATCCTATGATAAAAACGCTTCTGTTTCCACCGCCAAACCTTTCA :  60 
TII_G2a : TGAGGTCTGATTTTTCATCCTATGATAAAAACACTTCTGTTTCCACCGCCAAACCTTTCA :  60 
TII_G2b : TGAGGTCTGATTTTTCTTCCTATGATAAAAACCCTTCTGTTTCCACCGCCAAACCTTTCA :  60 
TII_G3  : CGAGTCCTGATTTTTCATGCTATGATAAAAACGCTTCTGTTTCAACCGCCAAACCTTTCA :  60 
TII_G4  : TGAGACCTGATTTTTCATCCTATGATAAAAACCCTTCTGTTTCCACCGCCAAACCTTTCA :  60 
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* 80 * 100 * 120
gGGGA-AATt—CAACaGTTTGgCACCaTTTT-GAGTGAAtTGGAaAACgTCA-ATtTT--

TI_A1   : CGGGAGAATTTGCAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAGATTTTT : 120 
TI_A2   : CGGGAGAATTTGCAACAGTTTGGCACCATTTTTGAGTGAATTGGAGAACGTCAGATTTTT : 120 
TI_B1   : CGGGAGAATTTGCAACAGTTTGACACCATTTTTGAGTGAATTGGAGAACGTCAGATTTTT : 120 
TI_B2   : GGGGAGAATTCGCAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAGATTTTT : 120 
TI_C1   : GGGGAGAATTCGCAACAGTTTGGCACCATTTTTGAGTGAATTGGAGAACGTCAGATTTTT : 120 
TI_C2   : GGGGAGAATTCGCAACAGTTTGGCACCATTTTTGAGTGAATTGGAGAACGTCAGATTTTT : 120 
TI_D    : GGGGAGAATTCGCAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAGATTTTT : 120 
TI_E    : GGGGAGAATGCGCAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAGATTTTT : 120 
TI_F1   : GGGGAGAATTCGCAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAGATTTTT : 120 
TI_F2   : GGGGAGAATTCGCAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAGATTTTT : 120 
TI_G1   : GGGGAGAATTCGCAACAGTTTGGCACCTTTTTTGAGTGAATTGGAAAACGTCAGATTTTT : 120 
TI_G2   : GGGGAGAATTCGCAACAGTTTGGCACCATTTTTGAGTGAATTGGAGAACGTCAGATTTTT : 120 
TI_H1   : GGGGACAATTCCCAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAAATTTTC : 120 
TI_H2   : GGGGACAATTCCCAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAAATTTTC : 120 
TI_I1   : TGGGACAATTCACAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAAATTTTC : 120 
T1_I2   : TGGGACAATTCACAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAAATTTTC : 120 
TI_J1   : GGGGACAATTCACAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAAATTTTC : 120 
TI_J2   : GGGGACAATTCACAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAAATTTTC : 120 
TI_K    : GGGGACAATTCCCAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAAATTTTC : 120 
TI_L1   : GGGGACAATTCCCAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAAATTTTC : 120 
TI_L2   : GGGGACAATTCACAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAAATTTTC : 120 
TI_L3   : GGGGAGAATTCACAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAAATTTTC : 120 
TII_A   : GGGGAGAATTCGCAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAGATTTTT : 120 
TII_B1  : GGGGAGAATTTGCAACAGTTTGGCACCATTTTGGAGTGAATTGGAAAACGTCAGATTTTT : 120 
TII_B2  : GGGGAGAATTTGCAACAGTTTGGCACCATTTTGGAGTGAATTGGAAAACGTCAGATTTTT : 120 
TII_C1  : GGGGAGAATTTGCAACAGTTTGGCACCATTTTGGAGTGAATTGGAAAACGTCAGATTTTT : 120 
TII_C2  : GGGGAGAATTTGCAACAGTTTGGCACCATTTTGGAGTGAATTGGAAAACGTCAGATTTTT : 120 
TII_D   : GGGGAGAATTTGCAACAGTTTGGCACCATTTTGGAGTGAATTGGAAAACGTCAGATTTTT : 120 
TII_E1a : GGGGAGAATTTGCAACAGTTTGGCACCATTTTGGAGTGAATTGGAAAACGTCAGATCTTT : 120 
TII_E1b : GGGGAGAATTTGCAACAGTTTGGCACCATTTTTGAGTGAACTGGAAAACGTCAGATCTTT : 120 
TII_E2  : GGGGAGAATTTGCAACAGTTTGGCACCATTTTTGAGTGAACTGGAAAACCTCAGATTTTT : 120 
TII_F   : GGGGAGAATTTGCAACAGTTTGGCACCATTTTTGAGTGAATTGGAAAACGTCAGATTTTT : 120 
TII_G1  : GGGGAGAATTTGCAACAGTTTGGCACCATTTTGGAGTGAATTGGAAAACGTCAGATTTTT : 120 
TII_G2a : GGGGAGAATTTGCAACAGTTTGGCACCATTTTGGAGTGAATTGGAAAACGTCAGATTTTT : 120 
TII_G2b : GGGGAGAATTTGCAACAGTTTGGCACCATTTTGGAGTGAATTGGAAAACGTCAGATTTTT : 120 
TII_G3  : GGGGAGAATGTGCAACTGTTTGGCACCATTTTGGAGTGAATTGGAAAACGTCATATTTTT : 120 
TII_G4  : GGGGATAATTTGCAACAGTTTGGCACCATTTTGGAGTGAATTGGAAAACGTCAGATTTTT : 120 
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* 140 * 160 * 180
-GtgaaaTTCTGACCCCG-GGgTTAgGgAtTTTTt-caaaaa------ttTt-C-CAgGT

TI_A1   : GGTGAACTTCTGACCCCGGGGGTTAGGGATTTTTT-CAAAAAAA--TGTTTTTCTCAGGT : 177 
TI_A2   : GGTGAACTTCTGACCCCGGGGGTTAGGGATTTTTT-CAAAAAAA--TGTTTTTCTCAGGT : 177 
TI_B1   : GGTGAAATTCTGACCCCGGGGGTTAGGGATTTTTT-CAAAAAAA--AGTTTTTCTCAGGT : 177 
TI_B2   : GGTGAAATTCTGACCCCGGGGGTTAGGGATTTTTT-CAAAAAAA--TGTTTTTCGCAGGT : 177 
TI_C1   : GGTGAAATTCTGACCCCGCGGGTTA-GGATTTTTT-CAAAAAA---TGTTTTTCGCAGGT : 175 
TI_C2   : GGTGAAATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAA---TGTTTTTCGCAGGT : 176 
TI_D    : GGTGAAATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAAA--AGTTTT-CACAGGT : 176 
TI_E    : CGTGAAATTCTGACCCCGCGGGTTAGGGATTTTTTTTAAAAAAA--AGAATT-CTCAGGT : 177 
TI_F1   : GGTGAAATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAA---AGTTTTTCGCAGGT : 176 
TI_F2   : GGTGAAATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAAA--AGTTTTTCGCAGGT : 177 
TI_G1   : GGTGAAATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAAA--AGTTTTTCGCAGGT : 177 
TI_G2   : GGTGAAATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAA---AGTTTTTCGCAGGT : 176 
TI_H1   : AGGGAAATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAA---AGTTTTTCTCAGGT : 176 
TI_H2   : AGGGAAATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAA---AGTTTTTCTCAGGT : 176 
TI_I1   : AGTGAAATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAA---AGTTTTTCTCAGGT : 176 
T1_I2   : AGTGAAATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAA---AGTTTTTCTCAGGT : 176 
TI_J1   : AGTGAAATTCTGACCCCGCGGGTTAGGGAATTTTT-CAAAAAC---AGTTTTTCTCAAGT : 176 
TI_J2   : AGTGAAATTCTGACCCCGCGGGTTAGGGAATTTTT-CAAAAAC---AGTTTTTCTCAGGT : 176 
TI_K    : AGTGAAATTCTGACCCCGCGGCTTAGGGATTTTTT-CAAAAAA---AGTTTTTCTCAGGT : 176 
TI_L1   : AGTGAAATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAA---AGTTTTTCTCAGGT : 176 
TI_L2   : AGTGAAATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAA---AGTTTTTCTCAGGT : 176 
TI_L3   : AGTGAAATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAA---AGTTTTTCTCAGGT : 176 
TII_A   : GGTGAAATTCTGACCCCGGGGGTTAGGGATTTTTT-C-----------TTT--CGCAGGT : 166 
TII_B1  : GGTGAAATTCTGACCCCGGGGGTTAGGGATTTTTT-C-----------TTT--CGCAGGT : 166 
TII_B2  : GGTGAAATTCTGACCCCGGGGGTTAGGGATTTTTT-C-----------TTT--CGCAGGT : 166 
TII_C1  : GGTGAAATTCTGACCCCGGGGGTTAGGGATTTTTT-C-----------TTT--CGCAGGT : 166 
TII_C2  : GGTGAAATTCTGACCCCGGGGGTTAGGGATTTTTT-C-----------TTT--CGCAGGT : 166 
TII_D   : GGTGAAATTCTGACCCCGGGGGTTAGGAATTTTTT-C-----------TTT--CGCAGGT : 166 
TII_E1a : GGTGGGATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAA---TCTTTTTCGCAGGT : 176 
TII_E1b : GGTGGGATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAA---TCTTTTTCGCAGGT : 176 
TII_E2  : GGTGAAATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAA---TGTTTTTCGCAGGT : 176 
TII_F   : GGTGAAATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAA---TGTTTTTCGCAGGT : 176 
TII_G1  : GGTGAAATTCTGACCCCGGGGGTTAGGGATTTTTT-CAAAAAA---AGTTTTTCGCAGGT : 176 
TII_G2a : GGTGAAATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAAAA-TGTTTTTCGCAGGT : 178 
TII_G2b : GGTGAAATTCTGACCCCGCGGGTTAGGGATTTTTT-CAAAAAAAAATGTTTTTCGCAGGT : 179 
TII_G3  : GGTCAAATTCTGACCCCGCGGGTTATGGATTTTT--CAAAAAAA--TGTTTTTCGCAGGT : 176 
TII_G4  : GGTGAAATTCTGACCCCGGGGGTTAGGGATTTTTT-CAAAAAAA--TGTTTTTCGCAGGT : 177 
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*
-aagTTg-cG

TI_A1   : GAAGTTGTCG : 187 
TI_A2   : GAAGTTCTCG : 187 
TI_B1   : GAAGTTGTCG : 187 
TI_B2   : GAAGTTGTCG : 187 
TI_C1   : TAAGTTGTCG : 185 
TI_C2   : TAAGTTGTCG : 186 
TI_D    : TAAGTTGTCG : 186 
TI_E    : TACGTTGTCG : 187 
TI_F1   : TAAGTTGTCG : 186 
TI_F2   : TAAGTTGTCG : 187 
TI_G1   : TAAGTTGTCG : 187 
TI_G2   : TAAGTTGTCG : 186 
TI_H1   : TAAGTTGTCG : 186 
TI_H2   : TAAGTTGTCG : 186 
TI_I1   : TAAGTTGTCG : 186 
T1_I2   : TAAGTTGTCG : 186 
TI_J1   : TAAGTTGTCG : 186 
TI_J2   : TAAGTTGTCG : 186 
TI_K    : GAAGTTGTCG : 186 
TI_L1   : TAAGTTGTCG : 186 
TI_L2   : TAAGTTGTCG : 186 
TI_L3   : TAAGTTGTCG : 186 
TII_A   : TAACTTGGCG : 176 
TII_B1  : AAAGTTGGCG : 176 
TII_B2  : AAAGTTGGCG : 176 
TII_C1  : TAACTTGGCG : 176 
TII_C2  : TAACTTGGCG : 176 
TII_D   : TAACTTGGCG : 176 
TII_E1a : TAAGTTGGCG : 186 
TII_E1b : TAAGTTGGCG : 186 
TII_E2  : TAAGTTGGCG : 186 
TII_F   : TAAGTTGGCG : 186 
TII_G1  : AAAGTTGTCG : 186 
TII_G2a : AAAGTTGGTG : 188 
TII_G2b : AGAGTTGGTG : 189 
TII_G3  : AAAGTTGGCG : 186 
TII_G4  : AAAGTTGGCG : 187 



HindIII 

Species Clone
number

Constituent monomeric
units Subfamily

I. monticola

20 20a HI_C
20b HI_C

26

26a HI_H
26b HI_H
26c HI_F
26d HI_I

143 143a HI_E
143b HI_K

146
146a HI_C
146b HI_E
146c HI_C

155
155a HI_D1
155b HI_F
155c HII_A

181 181a HII_A
181b HI_K

I. galani

160
160a HI_E
160b HI_J
160c HI_G

161 161a HI_D1
161b HI_C

168
168a HI_H
168b HI_E
168c HI_C

189 189a HI_G
189b HI_C

192 192a HI_A
192b HI_E

I. martinezricai

170 170a HI_G
170b HI_C

174 174a HI_C
174b HI_B

196 196a HI_A
196b HI_C

249 249a HI_B
249b HI_H

278 278a HI_A
278b HI_C

279
279a HI_I
279b HI_G
279c HI_C

281 281a HI_B
281b HI_G

Table S2. Description of cloned HindIII satDNA multimers. Lowercase letters after

the  clone  name  were  assigned  in  alphabetical  order  according  to  the  order  of

consecutive monomers in the satellite array.
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HindIII 

Species Clone
number

Constituent monomeric
units Subfamily

I. cyreni

177 177a HIII_C
177b HIII_B

205

205a HI_M
205b HIII_D
205c HIII_B
205d HIII_B

207

207a HIII_C
207b HI_M
207c HI_M
207d HIII_C

I. cyreni

209
209a HIII_C
209b HIII_B
209c HIII_B

283

283a HIII_D
283b HIII_D
283c HIII_E
283d HI_M

286

286a HIII_D
286b HIII_B
286c HIII_B
286d HI_M
286e HIII_C

290 290a HI_M
290b HIII_B

I. horvathi
59 59a HI_C

59b HI_C

61 61a HI_I
61b HI_E

I. aurelioi

32 32a HII_E
32b HII_F

55 55a HI_E
55b HI_C

59 59a HI_F
59b HI_F

266

266a HII_A
266b HII_C
266c HII_F
266d HI_D1

I. aranica

61 61a HI_F
61b HII_A

98 98a HI_F
98b HI_K

99 99a HII_A
99b HI_F

108 108a HII_F
108b HII_F

173 173a HI_G
173b HII_G

Table S2 (continued)
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HindIII 

Species Clone
number

Constituent monomeric
units Subfamily

I. bonnali

50 50a HII_D
50b HIII_E

54 54a HII_B
54b HIII_E

55 55a HIII_C
55b HIII_E

140 140a HII_A
140b HII_F

101

101a HI_D1
101b HI_H
101c HI_D1
101d HI_L

104
104a HI_D1
104b HI_F
104c HI_K

I. bonnali

110 110a HI_D1
110b HI_C

114
114a HI_F
114b HI_I
114c HI_I

134 134a HI_F
134b HII_A

Table S2 (continued)
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TaqI 

Species Clone
number

Constituent monomeric
units Subfamily

I. horvathi

3 3a TI_L3
3b TI_A2

5 5a TI_B2
5b TI_A2
5c TI_B2

9 9a TI_C2
9b TI_C1
9c TI_G2

10 10a TI_A2
10b TI_A1

14 14a TI_G2
14b TI_G2
14c TI_G2

15 15a TI_D
15c TI_D

23 23a TI_F1
23b T1_C1
23c TI_C2

24 24a TII_F
24b TII_F
24c TI_A1

I. aurelioi

5 5a TII_B1
5b TII_C1

34 34a TII_E2
34b TII_B1

86 86a TII_C1
86b TII_F

166 166a TII_B2
166b TII_E1a
166c TII_E1a

I. aranica

13 13a TII_G3

13b TII_C2
41 41a TI_E

41b TI_F1
41c TII_A
41d TI_F1
41e TI_F1

44 44a TII_G2a
44b TII_B2

108 108a TII_G2a
108b TII_G2b

114 114a TI_F1
114b TI_F2

117 117a TI_F1
117b TI_F1

Table S3.  Description of cloned TaqI satDNA multimers. Lowercase letters after the

clone name were assigned in alphabetical order according to the order of consecutive

monomers in the satellite array.
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TaqI

Species Clone number Constituent monomeric
units Subfamily

I. aranica

147

147a TII_F
147b TII_A
147c TI_G1
147d TI_E
147e TI_F1
147f TII_A

150 150a TII_G3
150b TII_A

I. bonnali 25 25a TI_H1
25b TI_L3
25c TI_H1

61 61a TI_F1
61b TI_F1

103 103a TII_G2
103b TI_L2

138 138a TII_E1b
138b TI_K

139 139a TI_C2
139b TI_F1

Table S3 (continued)
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Conclusions 

Main conclusions of Chapter I: Karyological characterization of Iberolacerta 

monticola. 

I. The cytogenetic analysis of male and female specimens from four different

populations of I. monticola showed a common karyotype, consisting of 2n=36 acrocentric 

chromosomes gradually decreasing in size. 

II. C-banding and differential fluorochome staining evidenced conspicuous

heterochromatic blocks in the centromeric and interstitial/pericentromeric regions, as well as a 

compartmentalization of GC-rich elements in the telomeric heterochromatin. 

III. Comparisons of the C-banding patterns among Iberolacerta species revealed

extensive heterogeneity in the amount, distribution and composition of the heterochromatic 

areas, even between species so closely related as I. monticola, I. galani and I. martinezricai, 

which emphasizes the dynamic nature of these genomic compartments. C-banding patterns 

may be useful to identify species-diagnostic characters, but do not necessarily reflect 

phylogenetic relationships among taxa. 

IV. In contrast with previous works, C-banding and comparative genomic

hybridization (CGH) uncovered a heteromorphic ZW sex chromosome pair in specimens of I. 

monticola from all four populations investigated. The heterogametic W chromosome is highly 

differentiated from the Z chromosome, both in size, heterochromatin content, and in the 

massive accumulation of female-specific sequences. The sex chromosome pair is superficially 

similar to that of other Iberolacerta species (I. horvathi, I. cyreni, and I. galani), which 

suggests that the presence of a differentiated ZW pair is the ancestral condition for this genus. 

The putative absence of heteromorphic sex chromosomes in I. martinezricai and I. aranica 

deserves further investigation. High-resolution molecular cytogenetic techniques, such as 

CGH, would be especially effective for identifying molecularly differentiated sex 

chromosomes, which may have been overlooked after conventional staining and C-banding. 

V. Neither the major ribosomal genes nor telomeric (TTAGGG)n repeats are

differentially amplified in the heterochromatin of the W chromosome. Instead, the major 

ribosomal genes were located in the subtelomeric region of chromosome pair 6. Hybridization 
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signals of the telomeric probe showed a telomere-typical pattern, as well as interstitial 

telomeric sites in five chromosome pairs, which could be remnants of chromosomal 

rearrangements that occurred during karyotype evolution. 

Main conclusions of Chapter II: Comparative chromosome painting in lacertid 

lizards. 

VI. Cross-species chromosome painting using I. monticola as the source genome

revealed homology of sex chromosomes in the genus Iberolacerta. A fusion event involving 

the primitive W chromosome and a small acrocentric autosome (chromosome 15 or 16) 

originated a biarmed neo-W and a multiple Z1Z2W sex chromosome system in I. bonnali. 

VII. The W chromosomes of I. monticola and representatives of two other lacertid

genera (Timon lepidus and Lacerta schreiberi) are highly differentiated from each other, and 

probably evolved independently through rapid accumulation of female-specific sequences 

characteristic of each lineage.  

VIII. A preliminary analysis of female metaphses with a Z chromosome paint suggest

that the ZW pair of  L. schreiberi is not homologous to that of I. monticola and T. lepidus, and 

represent an independent origin of sex chromosomes in Lacertidae, masked under 

morphologically similar  karyotypes.  

IX. Appart from the sex chromosomes, I. monticola, T. lepidus and L. schreiberi show

a high degree of chromosome conservation. The main rearrangements in the studied species 

include a centric fusion of two acrocentric chromosomes in T. lepidus, and a translocation of 

microchromosomes to macrochromosomes in I. monticola.  

X. Comparative gene mapping detected partial synteny of I. monticola chromosome 1

with chicken chromosomes 3, 5 and 7, a feature conserved across most Squamate lineages. 

The results of gene mapping in I. monticola also support lack of homology between the sex 

chromosomes of lacertids and A. carolinensis, and suggest that the loss of microchromosomes 

in Lacertidae was due to repeated fusions between microchromosomes that existed in the 

ancestral karyotype of squamate reptiles. 
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Main conclusions of Chapter III: Evolutionary dynamics of two satellite DNA 

families in the genus Iberolacerta. 

XI. A detailed characterization of intragenomic variability of two satDNA families,

namely HindIII and TaqI, in Iberolacerta unraveled complex evolutionary dynamics that 

depart from the expected patterns of concerted evolution. 

XII. HindIII and TaqI satDNAs differ in their chromosomal locations, abundances and

turnover rates; nevertheless, they share some common traits: 

- Each satellite family is made up of a library of monomer variants or subfamilies, which were

already present in the common ancestor of Iberolacerta.

- Species-specific profiles are mainly defined by the differential amplification of particular

variants from the library, rather than by gradual accumulation and homogenization of single

nucleotide changes.

- Long-term sequence conservation of satellite monomers might be related to putative

functional constraints, but also to the interspersed organization of divergent monomer variants

in satellite arrays, which could reduce the efficacy of homogenization mechanisms.

- Extensive fluctuations in copy number may also lead to a drastic reduction in the abundance

of a satellite family, as would be the case of HindIII satDNA in I. horvathi and I. bonnali. In

the latter species (and maybe also in the other Pyrenean taxa), rapid changes in this

centromeric satDNA might be correlated with the exceptionally high rate of chromosomal

rearrangements characteristic of this lineage.

XIII. As a result of this complex mode of evolution, both HindIII and TaqI satDNAs are

poorly informative as phylogenetic markers for the genus Iberolacerta. 
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chromatin at the centromeres of all chromosomes, as well as 
clear pericentromeric and light telomeric C-bands in several 
chromosome pairs. These results highlight some chromo-
somal markers which can be useful to identify species-spe-
cific diagnostic characters, although they may not accurate-
ly reflect the phylogenetic relationships among the taxa. In 
addition, C-banding revealed the presence of a heteromor-
phic ZW sex chromosome pair, where W is smaller than Z and 
almost completely heterochromatic. This finding sheds light 
on sex chromosome evolution in the genus  Iberolacerta  and 
suggests that further comparative cytogenetic analyses are 
needed to understand the processes underlying the origin, 
differentiation and plasticity of sex chromosome systems in 
lacertid lizards. © 2013 S. Karger AG, Basel 

 The genus  Iberolacerta  is a group of rock lizards (fam-
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Western Europe. According to recent taxonomic revi-
sions [Mayer and Arribas, 2003; Arribas and Carranza, 
2004; Arribas and Odierna, 2004; Carranza et al., 2004; 
Crochet et al., 2004; Arribas et al., 2006], the genus  Iberola-
certa  comprises 8 species, which can be subdivided into 3 
main units: (1)  I. horvathi  (Méhely, 1904), occurring in the 
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sity in the degree of sex chromosome differentiation with 
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which previous cytogenetic investigations did not detect 
differentiated sex chromosomes. The karyotype is com-
posed of 2n = 36 acrocentric chromosomes. NORs and the 
major ribosomal genes were located in the subtelomeric 
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telomeric sequences (TTAGGG) n  were visualized at the 
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Eastern Alps and the north of the Dinaric Chains; (2) the 
subgenus  Pyrenesaura  (Arribas, 1999), which includes the 
3 species found in the Pyrenees Mountains, namely  I. 
aranica  (Arribas, 1993),  I. aurelioi  (Arribas, 1994) and  I. 
bonnali  (Lantz, 1927); and (3) the 4 species included in the 
‘Iberian group’, i.e . I. cyreni  (Müller and Hellmich, 1937), 
 I. martinezricai  (Arribas, 1996),  I. galani  (Arribas, Car-
ranza and Odierna, 2006), and  I. monticola  (Boulenger, 
1905), with disjunct distributions in central and northern
mountain ranges of the Iberian Peninsula.

  The phylogeny of this genus has been under continual 
revision, but the evolutionary relationships among some 
taxa still remain unresolved [Mayer and Arribas, 2003; 
Carranza et al., 2004; Arribas et al., 2006]. Within the Ibe-
rian group, data from mitochondrial and nuclear genes 
suggest that  I. cyreni  split earlier, between 6 and 7.5 mya, 
while the speciation events within the clade formed by  I. 
martinezricai ,  I. galani  and  I. monticola  occurred consid-
erably later, at the beginning of the Pleistocene (roughly 
2.5 mya). Recent molecular analyses support the hypoth-
esis that  I. monticola  was the first lineage to diverge from 
the common branch, shortly before the separation of 
 I. martinezricai  and  I. galani,  approximately 1.8 mya
(see www.karger.com/doi/10.1159/000356049 for online
suppl. fig. 1) [Remón et al., 2013].

  Karyological studies based on conventional staining 
and banding techniques have proven useful for establish-
ing phylogenetic relationships and delimiting species and 
subspecies boundaries in the genus  Iberolacerta , as well 
as in several other lacertid groups [e.g. Olmo et al., 1993; 
Odierna et al., 1996; in den Bosch et al., 2003; Kupri-
yanova and Melashchenko, 2011]. Previous cytogenetic 
surveys of the  Iberolacerta  species [Capula et al., 1989; 
Odierna et al., 1996; Arribas and Odierna, 2004; Arribas 
et al., 2006] showed a common diploid number of 2n = 
36 and a similar karyotypic macrostructure, with all chro-
mosomes acrocentric. Only the karyotypes of the 3 
 Iberolacerta  species from the Pyrenees differ from this 
formula, with reduced diploid numbers that range from 
2n = 24 to 26 in males and from 23 to 26 in females 
and numerous biarmed chromosomes, which probably 
evolved from the ancestral acrocentric complement 
through a series of Robertsonian fusions (online suppl. 
fig. 1) [Odierna et al., 1996].

  Interestingly, C-banding analyses uncovered high lev-
els of diversity regarding the sex chromosome system. A 
ZW sex chromosome pair, in which the W chromosome 
is smaller than the Z and highly heterochromatic, has been 
described in  I. horvathi ,  I. cyreni  and  I. galani  [Ca pula et 
al., 1989; Odierna et al., 1996; Arribas et al., 2006]. In con-

trast, the sex chromosomes of  I. aranica ,  I. martinezricai  
and  I. monticola  are reported to be homomorphic and in-
distinguishable by differences in size, morphology or
heterochromatinization [Odierna et al., 1996; Arribas and 
Odierna, 2004]. More significant differences are present 
in the Pyrenean species  I. bonnali  and  I. au relioi , with 
multiple Z 1 Z1Z 2 Z 2 /Z 1 Z 2   W sex chromosome systems 
where the W chromosome is biarmed and the Z 1  and Z 2  
counterparts are uniarmed (online suppl. fig. 1) [Odierna 
et al., 1996]. The presence of ZW-derived multiple sex 
chromosome systems is a particularly uncommon feature 
within lizards, so far reported for only 2 other spe-
cies of lacertids, namely  Zootoca vivipara  and  Podarcis 
taurica  (Chromorep: A reptile chromosomes database, 
http://193.206.118.100/professori/chromorep.pdf).

  The heterogeneous situation concerning sex chromo-
somes in the genus  Iberolacerta  is illustrative for the wide 
diversity of sex chromosomes found in the family Lacer-
tidae. Female heterogamety is considered to be universal 
within this family. Even so, sex chromosomes at different 
stages of differentiation are frequently found between 
closely related species and even between populations of 
the same species, suggesting that sex chromosomes can 
have multiple and independent origins in related lacertid 
taxa [e.g. Olmo et al., 1987; Odierna et al., 1993, 2001; in 
den Bosch et al., 2003].

  Typically, sex chromosomes are thought to evolve 
 after suppression of recombination through increasing 
stages of differentiation, from a primitive form, in which 
nascent sex chromosomes differ only in a limited region 
and are otherwise indistinguishable, to an advanced state, 
in which sex chromosomes are highly heteromorphic 
[Charlesworth et al., 2005; recently reviewed in Charles-
worth and Mank, 2010]. Reports on lacertid karyotypes, 
mainly accomplished through conventional banding 
techniques, suggest that lacertid sex chromosomes have 
evolved primarily via heterochromatinization followed 
by degeneration of the female-specific W chromosome, 
although this is probably not the only mechanism operat-
ing in this family [Olmo et al., 1986, 1987; Ezaz et al., 
2009]. Chromosomal rearrangements, such as inversions 
or translocations, can be also involved in the primary dif-
ferentiation of lizard sex chromosomes [for a review, see 
Olmo et al., 1987; Ezaz et al., 2009], implying that even 
newly evolved sex chromosomes can be heteromorphic 
[Charlesworth and Mank, 2010]. In this regard, compar-
ative cytogenetic analyses within the genus  Iberolacerta 
 can provide valuable insights into the processes underly-
ing the origin, differentiation and evolutionary transi-
tions of sex chromosomes.
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  In this study, we focus on one of the  Iberolacerta  spe-
cies,  I. monticola ,   for which previous cytogenetic inves-
tigations did not detect differentiated sex chromosomes. 
This species is distributed across a wide area in the north 
of the Iberian Peninsula, along the Cantabrian Mountain 
range, where it inhabits mainly rocky habitats at middle-
high altitudes [Mayer and Arribas, 2003; Carranza et al., 
2004; Crochet et al., 2004]. Apart from this continuous 
area, there are several other isolated populations in the 
Serra da Estrela Mountains, in Portugal, and in Galicia, 
at the north-west corner of Spain ( fig. 1 ). Some popula-
tions in this last region are found at areas of exception-
ally low altitudes, most of them associated to Atlantic 
forests in shady fluvial gorges [Galán, 1999; Galán et al., 
2007].

  The karyotype of  I. monticola  has been previously de-
scribed based on conventional staining and banding tech-
niques (C-banding and silver-staining) for the popula-
tions of Puerto de Vegarada, in the Cantabrian Moun-
tains, and Serra da Estrela [Odierna et al., 1996]. Here, we 
reinvestigate the specimens from the Cantabrian popula-
tion (locality 1 in  fig. 1 ) and extend the cytogenetic analy-
sis to 2 additional isolated populations from the Canta-
brian area, Villabandín and Salientes (localities 2 and 3 in 
 fig. 1 , respectively), as well as to the lowland population 

of Eume, in the northwesternmost edge of the species’ 
range (locality 4 in  fig. 1 ). The aim of this study was to (1) 
better characterize the karyotype of  I. monticola  and per-
form a comparative cytogenetic analysis within a phylo-
genetic framework, in order to clarify chromosome evo-
lution within the genus  Iberolacerta ;   and (2) search for 
sex-specific differences that enable the identification of 
cryptic sex chromosomes. This was accomplished by us-
ing conventional staining and banding techniques, dif-
ferential fluorochrome staining and fluorescence in situ 
hybridization (FISH) with 18S-5.8S-28S rDNA and telo-
meric (TTAGGG) n  probes.

  Material and Methods 

 Specimens 
 One adult male and one adult female of  I. monticola  were col-

lected from each of the following localities: (1) Puerto de Vegarada 
(43.04N, –5.46E), (2) Villabandín (42.90N, –6.14E), (3) Salientes 
(42.85N, –6.31E), and (4) the fluvial valley of the river Eume 
(43.41N, –8.07E) ( fig. 1 ). Permissions for fieldwork and ethics ap-
proval of experimental procedures were issued by the competent 
authorities Xunta de Galicia and Junta de Castilla-León, in Spain, 
in accordance with the Spanish legislation (Royal Decree 1201/2005 
and Law 32/2007, on the protection of animals used for experi-
mentation and other scientific purposes).

  Fig. 1.  Map of the Iberian Peninsula showing the current distribution area of  I. monticola  (blue areas). Num-
bers represent localities sampled in the present study: (1) Puerto de Vegarada, (2) Villabandín, (3) Salientes, and 
(4) Eume. See text for further details.

D
ow

nl
oa

de
d 

by
: 

U
ni

ve
rs

id
ad

 d
e 

la
 C

or
un

a
19

3.
14

4.
56

.2
0 

- 9
/3

/2
01

4 
5:

50
:5

5 
P

M

183

http://dx.doi.org/10.1159%2F000356049


 Karyological Characterization of 
Iberolacerta monticola 

Cytogenet Genome Res 2014;142:28–39
DOI: 10.1159/000356049

31

  Phenotypic sex was determined on the basis of external mor-
phology and then confirmed via visual inspection of gonads upon 
dissection.

  Cell Culture and Chromosome Preparations 
 Metaphase chromosome spreads were prepared according to 

previously described protocols [Giovannotti et al., 2009a]. Fibro-
blast cell lines were cultured in RPMI 1640 (Sigma) supplemented 
with 10% fetal bovine serum, 100 U/ml penicillin, 100 mg/ml 
streptomycin, and 2 m M  L-glutamine (all from Gibco). Cultures 
were incubated at 30   °   C in a humidified atmosphere of 5% CO 2  in 
air. When exponential cell growth was observed around the pri-
mary explants (usually after 2–3 weeks of culture), the cells were 
trypsinized and subcultivated at a 1:   2 split ratio. Following this first 
passage, the cell lines were grown until 70–80% of overall conflu-
ence was reached. Six hours prior to harvesting, 0.1 μg/ml col-
cemid (Roche) was added to the cultures followed by 30 min of 
hypotonic treatment in 0.075  M  KCl at 30   °   C and fixation in 3:   1 
methanol:glacial acetic acid. Fifteen microlitres of the cell suspen-
sion were dropped onto glass slides and air-dried.

  Chromosome Analysis 
 Conventional chromosome staining was performed using a 5% 

Giemsa solution at pH 7. C-banding was carried out according 
to Sumner [1972]. C-banded chromosomes were independently 
stained with 10% Giemsa solution at pH 7 for 10 min and sequen-
tially with both fluorochromes chromomycin A 3  (CMA 3 ), and 
4 ′ ,6-diamidino-2-phenylindole (DAPI) [Schweizer, 1976; Schmid 
et al., 1983]. Silver-staining of nucleolar organizer regions (Ag-
NORs) was performed as described by Howell and Black [1980].

  Chromosomal locations of the 18S-5.8S-28S rRNA genes were 
determined by FISH as described in González-Tizón et al. [2000], 
with slight modifications, using the DNA probe p Dm  238 from 
 Drosophila melanogaster  [Roiha et al., 1981], labeled by nick trans-
lation with digoxigenin-11-dUTP (Roche).

  Briefly, the slides were dehydrated by serial ethanol washes 
[twice for 2 min in 70% (v/v) ethanol, twice for 2 min in 90% eth-
anol and once for 5 min in 100% ethanol], air dried and aged at 
65   °   C for 30 min. Subsequently, they were incubated in DNase-free 
RNase (100 μg/ml in 2× SSC) at 37   °   C for 30 min and washed in 2× 
SSC for 10 min. One hundred nanograms of labeled probe (2.5 μl) 
were made up to 30 μl with hybridization buffer (50% formamide, 
2× SSC and 10% dextran sulphate), denatured at 75   °   C for 15 min, 
chilled on ice, placed onto each slide, covered with a coverslip, and 
finally sealed with rubber cement. Chromosome denaturation was 
performed in a slide PCR (MJ Research, MJ 100) as follows: 75   °   C 
for 7 min, 55   °   C for 2 min, 50   °   C for 30 s, 45   °   C for 1 min, 42   °   C for 
2 min, 40   °   C for 5 min, 38   °   C for 5 min, and 37   °   C for 5 min. Hy-
bridization took place at 37   °   C overnight in a humid chamber. 
Posthybridization washes consisted of two 5-min incubations in 
2× SSC at 37   °   C and at room temperature, respectively, followed 
by a 5-min incubation in washing solution composed of 0.1  M  Tris, 
0.15  M  NaCl and 0.05% Tween-20 at room temperature. Signal de-
tection included 3 consecutive incubation steps, at 37   °   C for 30 min 
each, with: (i) mouse anti-digoxigenin antibody (Roche), (ii) fluo-
rescein isothiocyanate (FITC)-conjugated rabbit anti-mouse IgG 
(Sigma-Aldrich) and (iii) FITC-conjugated goat anti-rabbit IgG 
(Sigma-Aldrich). After each incubation step, slides were washed 3 
times for 5 min with washing solution at room temperature. Chro-

mosomes were counterstained with 1.5 μg/ml propidium iodide in 
the anti-fade medium Vectashield (Vector Laboratories).

  Chromosome mapping of the (TTAGGG) n  sites was carried 
out with a Cy3-labeled pan-telomeric DNA probe (Cambio) fol-
lowing the manufacturer’s instructions. The slides were mounted 
using the anti-fade medium Vectashield (Vector Laboratories), 
containing 1.5 μg/ml DAPI.

  Images were captured using an epifluorescence microscope 
Nikon Microphot-FXA equipped with a Nikon DS-Qi1Mc digital 
camera and processed with the NIS-Elements D 3.10 software.

  Results 

 Karyotypes, Heterochromatin Distribution and 
Fluorochrome Staining 
 All analyzed specimens of  I. monticola  showed a kar-

yotype composed of 2n = 36 acrocentric chromosomes 
of gradually decreasing size ( fig. 2 ).

  C-banding evidenced constitutive heterochromatin at 
the centromeres of all chromosomes and interstitially at 

b

a

  Fig. 2.  C-banded karyotypes of male ( a ) and female ( b )  I. montic-
ola  from the population of Eume. Sex chromosome pairs ZZ and 
ZW (inset). Scale bars = 5 μm. 
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the pericentromeric regions of the 10 larger chromosome 
pairs ( figs. 3 ,  4 ). These conspicuous heterochromatic 
blocks were uniformly stained with both DAPI and 
CMA 3 , and hence, they do not seem to contain particu-
larly AT- or GC-rich repetitive DNA families ( figs. 3 c–f, 
 4 ). Faint C-positive bands were also found at the ends of 
several chromosome pairs (tentatively, in the 12 larger 

chromosome pairs) and resulted only positively stained 
by CMA 3 , indicating that this telomeric heterochromatin 
was composed of GC-rich sequences. In addition, CMA 3  
staining produced an intense fluorescent signal in the 
subterminal region of a large chromosome pair, probably 
correlated with NOR-associated heterochromatin ( figs. 
3 e, f,  4 c, d).

a b

c d

e f

  Fig. 3.  Metaphase plates of male ( a ,  c ,  e ) 
and female ( b ,  d ,  f )  I. monticola  from Eume, 
C-banded and stained with Giemsa ( a ,  b ), 
DAPI ( c ,  d ) and CMA 3  ( e ,  f ). Asterisks in  e  
and  f  indicate CMA 3 -positive signals asso-
ciated with NORs. Empty and filled arrows 
point to Z and W sex chromosomes, re-
spectively. Scale bars = 10 μm. 
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  The differences in the pattern of heterochromatin dis-
tribution between sexes clearly revealed the presence of 
a cytologically differentiated ZW sex chromosome pair. 
The W chromosome was easily recognizable in female 
metaphases, being one of the smallest chromosomes of the 
karyotype ( fig. 2 b) and almost completely heterochromat-
ic, with only a small euchromatic region located in an in-
terstitial position ( fig. 3 b). The heterochromatin of the W 
chromosome was intensely stained with both DAPI and 
CMA 3  ( figs. 3 d, f,  4 b, d). C-banding also allowed the iden-
tification of the Z chromosome, present in 2 copies in 
males and in a single copy in females. This element was as 
large as the chromosomes of the 9th or 10th pair and dif-
fered only slightly from the autosomes in bearing a bright-
er, CMA 3 -positive, telomeric C-band ( figs. 2 a,  3 e,  4 c).

  Chromosomal Mapping of the 18S-5.8S-28S rRNA 
Genes 
 Ag-NOR banding agreed with CMA 3  evidence and 

showed active NORs on the secondary constriction in the 
subtelomeric regions of chromosome pair 6 ( figs. 2 ,  5 a, b).

  Fluorescent hybridization signals of the 18S-5.8S-28S 
rRNA genes were also coincident with Ag-NOR bands 
and did not reveal more inactive loci ( fig. 5 c, d).

  Chromosomal Location of the (TTAGGG) n  Sites 
 FISH with a telomeric probe (TTAGGG) n  produced 

discrete fluorescent signals at the telomeres of all chro-
mosomes ( fig. 5 e, f). Additionally, bright hybridization 
signals were detected at interstitial sites (so-called inter-
stitial telomeric sites, ITSs) in 5 large chromosome pairs 
in all the metaphase spreads examined. None of these 
ITSs were located on either the sex chromosomes or the 
NOR-bearing pairs.

  Discussion 

 Chromosome Number and Karyotypes 
 In accordance with previously published results [Odi-

erna et al., 1996], the karyotypes obtained from males and 
females of  I. monticola  showed a diploid chromosome 

a b

c d

  Fig. 4.  Metaphase plates of male ( a ,  c ) and 
female ( b ,  d )  I. monticola  from Puerto de 
Vegarada, C-banded and stained with 
DAPI ( a ,  b ) and CMA         3  ( c ,  d ). Asterisks in 
 c  and  d  indicate CMA 3 -positive signals as-
sociated with NORs. Empty and filled ar-
rows point to Z and W sex chromosomes, 
respectively. Scale bars = 10 μm. 
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complement of 2n = 36 acrocentric elements, which is 
common to all the species assigned to the ‘Iberian group’ 
of the genus  Iberolacerta , namely  I. galani ,  I. martinez-
ricai ,  I. cyreni , and the said  I. monticola. 

  In contrast with chromosome morphology, the pat-
tern of heterochromatin distribution is not so conserva-
tive between these taxa [Odierna et al., 1996], and each 

species displays its own heterochromatin profile. In gen-
eral, all the  Iberolacerta  species – with the only exception 
of  I. bonnali  – show prominent C-bands at the centro-
meres of almost all the acrocentric chromosome pairs. 
The presence of centromeric heterochromatin is a wide-
spread character in lacertids [Olmo et al., 1986, 1993; 
Odierna et al., 1996], and it has been suggested that it may 

a b

c d

e f

  Fig. 5.  Chromosomal localization of the 
18S-5.8S-28S rRNA genes and (TTAGGG)                       n  
telomeric sequences in male ( a ,  c ,  e ) and 
female ( b ,  d ,  f )  I. monticola . Ag-NOR 
bands ( a ,  b ) and FISH signals ( c ,  d ) of
the 18S-5.8S-28S rRNA genes (arrows).  e , 
 f  Hybridization patterns of the telomeric 
probe (TTAGGG) n . Arrows point to inter-
stitial telomeric sites. Scale bars = 10 μm. 
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play a role in centromere structure and function [e.g. 
Capriglione et al., 1998].

  However, the composition of the highly repetitive 
DNA sequences that constitute this centromeric hetero-
chromatin is not necessarily conserved between the dif-
ferent  Iberolacerta  species, as indicated by the fact that 
these DAPI-positive C-bands are also brightly stained by 
CMA 3  in  I. monticola  and  I. galani  [Arribas et al., 2006], 
but are CMA 3 -negative in  I. martinezricai  [Arribas and 
Odierna, 2004].

  Moreover, the C-banding technique revealed the pres-
ence of additional DAPI- and CMA 3 -positive hetero-
chromatin in the pericentromeric regions of the 10 larger 
chromosome pairs. These interstitial heterochromatic re-
gions have not been previously detected by C-banding in 
any of the  Iberolacerta  species, although they are probably 
correlated with the pericentromeric bands generated on 
the 6 larger chromosome pairs of  I. monticola  after the 
digestion of heterochromatin with the endonuclease  Alu I 
[Odierna et al., 1996]. This  Alu I banding pattern shows 
the variation in sequence composition between the  Alu I-
sensitive heterochromatin located at the centromeres 
and the pericentromeric  Alu I-resistant heterochromatin 
present at least on 6 chromosome pairs.

  Even though satellite DNAs in constitutive hetero-
chromatin are usually composed of AT-rich elements 
[e.g. King and Cummings, 1997; Plohl et al., 2008], the 
faint C-bands revealed at the telomeres in the 12 larger 
chromosome pairs of  I. monticola  were only visible after 
CMA 3  staining, and therefore, a high GC content can be 
postulated. GC-rich satellites have been reported for 
some animal species [Meneveri et al., 1995; Malykh et 
al., 2001; Barragán et al., 2002; Petrović et al., 2009], and 
in Squamate reptiles, a telomeric GC-rich satellite has 
been described for the skink  Eumeces schneideri  [Gio-
vannoti et al., 2009b]. The compartmentalization of GC-
rich elements in telomeric heterochromatin could be re-
lated to the hypothesized role of short guanine stretches 
in telomere maintenance and stability [Muniyappa et al., 
2000], as well as in promoting chromosome rearrange-
ments through recombination between satellite and 
telomeric sequences [e.g. Hartmann and Scherthan, 
2004].

  The presence of telomeric heterochromatin blocks in 
some chromosome pairs of  I. monticola  and in all chro-
mosomes of  I. galani  [Arribas et al., 2006] constitutes a 
cytogenetic marker that further discriminates the karyo-
types of both species from  I. martinezricai , where all 
chromosomes are devoid of telomeric C-bands [Arribas 
and Odierna, 2004].

  On the whole, C-banding data gathered so far in the 
genus  Iberolacerta  reveal extensive heterogeneity in the 
amount and distribution of the heterochromatic fraction, 
even between species so closely related as  I. martinezricai , 
 I. monticola  and  I. galani . However, the karyological 
 affinities unveiled between  I. monticola  and  I. galani  are 
not consistent with molecular data [Arribas et al., 2006; 
Remón et al., 2013], which indicate that  I. monticola  is the 
sister taxon to the clade formed by  I. galani  and  I. marti-
nezricai  (online suppl. fig. 1). In the light of the phylog-
eny, it seems likely that the C-banding patterns of  I. mon-
ticola  and  I. galani  represent the ancestral condition for 
this lineage; thus, the particular differences in hetero-
chromatin distribution and composition reported for  I. 
martinezricai  constitute a derived character that, similar-
ly to other cytogenetic traits (e.g. NOR location, see be-
low) or osteological autapomorphies distinctive of this 
taxon [Arribas and Odierna, 2004], could have become 
fixed after the species divergence, due to a random ge-
netic drift in small populations. In conclusion, our find-
ings support the idea that, even if C-banding patterns in 
lacertid lizards can be useful to identify species’ diagnos-
tic characters, they may not accurately reflect the phylo-
genetic relationships among taxa [Olmo et al., 1986].

  Ribosomal Loci 
 As previously reported in  I. monticola  [Odierna et al., 

1996], silver-staining documented a single NOR site in a 
subtelomeric position of chromosome pair 6. Such NOR 
location at the telomeres of a large chromosome pair (L-
type after Olmo et al. [1993]) appears to be ubiquitous 
among lacertids [Olmo et al., 1993], and it is also the ple-
siomorphic condition for the genus  Iberolacerta , where 
only  I. cyreni  and  I. martinezricai  differ in showing a NOR 
in an interstitial position on a medium-sized chromo-
some pair (M-type after Olmo et al. [1993]) [Odierna et 
al., 1996; Arribas and Odierna, 2004].

  FISH with the 28S-5.8S-18S rDNA probe, carried out 
for the first time in this genus, confirmed the presence of 
the ribosomal clusters at the sites identified by silver-
staining and did not show additional transcriptionally in-
active loci. In addition, the bright CMA 3  signal associated 
with the NOR site highlighted the GC-richness in rDNA 
base composition, as reported for a wide variety of organ-
isms [e.g. Sumner, 1990 and references therein].

  Telomeric Repeats 
 Hybridization signals of the (TTAGGG) n  probe were 

located at the telomeres of all chromosomes and at inter-
stitial positions on 5 large chromosome pairs.
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  ITSs have been observed in many vertebrate species 
[e.g. Meyne et al., 1990; Lee et al., 1993; Nanda and 
Schmid, 1994; Garagna et al., 1997; Ventura et al., 2006], 
including several families of Squamate reptiles [Meyne et 
al., 1990; Schmid et al., 1994; Pellegrino et al., 1999; Ber-
tolotto et al., 2001; Srikulnath et al., 2009]. They usually 
consist of large arrays of telomeric-like repeats common-
ly located in pericentromeric regions, within or at the 
margins of constitutive heterochromatin.

  A large body of evidence indicates that ITSs may be 
remnants of chromosomal rearrangements that occurred 
during chromosome evolution [for a review, see Lin and 
Yan, 2008; Ruiz-Herrera et al., 2008]. Likewise, the ITSs 
detected in  I. monticola  could be the result of chromo-
some reorganization events, such as tandem fusions of 
ancestral acrocentric chromosomes, paracentric inver-
sions involving the telomeric sequences or pericentric 
 inversions in ancestral sub-/metacentric chromosomes. 
The high intensity of the ITS signals, generally larger than 
those detected at the telomeric ends, suggests that the re-
tained (TTAGGG) n  sequences have also been amplified. 
In this regard, it is interesting to point out that karyotype 
evolution in lacertids is thought to be characterized by a 
progressive translocation of microchromosomes to mac-
rochromosomes [Olmo et al., 1986; Odierna et al., 1987]. 
In fact, the basic diploid number of  Iberolacerta  (2n = 36) 
differs from the common lacertid karyotype in that it 
lacks a pair of microchromosomes [Olmo et al., 1993]. 
Moreover, ITSs have been associated with fragile sites and 
recombination hotspots [recently reviewed in Bolzán, 
2012] that may confer greater flexibility for karyotype 
change by providing potential new sites for telomere for-
mation [Meyne et al., 1990].

  However, the presence of ITSs in the karyotype is not 
always related to structural chromosome changes. Preex-
isting ITSs, including the short stretches of telomeric hex-
amers that are presumably inserted during the repair of 
double strand breaks [Nergadze et al., 2004, 2007], could 
be subsequently spread and expanded at different intra-
chromosomal regions by common mechanisms of repet-
itive DNA amplification, such as unequal crossing-over 
or sequence conversion [Wiley et al., 1992; Vermeesch et 
al., 1996; Garagna et al., 1997; Nanda et al., 2008]. For in-
stance, a process of heterochromatin association and un-
equal exchange has been proposed to explain the disper-
sion and amplification of ITSs embedded within hetero-
chromatin to new chromosomal locations in lemur and 
rodent species [Go et al., 2000; Rovatsos et al., 2011].

  Therefore, further studies of the occurrence of ITSs 
and comparative karyological analyses, such as chromo-

some painting, between lacertids and closely related liz-
ard families are required to elucidate the origin of these 
nontelomeric sites and clarify their association with 
karyotype evolution in this lineage.

  Sex Chromosomes 
 Populations of  I. monticola  from the locality of Puerto 

de Vegarada, in the Cantabrian Mountain range, were 
first reported to lack differentiated sex chromosomes 
[Odierna et al., 1996]. In the present study, however, a 
heteromorphic ZW chromosome pair was consistently 
identified in the female specimens analyzed from this 
same population. The discrepancy between those obser-
vations and our results could be just due to experimental 
artifacts. For instance, the higher degree of chromosome 
condensation in metaphase spreads obtained by scraping 
techniques from tissues (former work) in comparison 
with chromosomes obtained from cell cultures (present 
study) could hamper the detection of the small-sized W 
chromosome by C-banding.

  The presence of a cytologically distinguishable ZZ/ZW 
system was also confirmed in specimens from 2 other 
Cantabrian populations, as well as from the population of 
Eume, at the northwesternmost edge of the species’ range. 
All 4 studied populations are currently isolated, and ac-
cording to recent molecular analysis [Remón et al., 2013], 
their independent evolution began roughly between 1.5 
and 0.9 mya, possibly as a consequence of climatic fluc-
tuations during the Pleistocene. Even so, the sex chromo-
some pairs of any of these populations are highly similar 
in terms of relative size and in the amount and distribu-
tion of heterochromatin, albeit they could exhibit some 
differentiation at finer scales hardly evidenced by C-
banding and fluorochrome staining. Therefore, a closer 
examination with more sensitive cytogenetic methods 
would be required to investigate the presence of subtle 
differences in DNA content of sex chromosomes between 
genetically divergent populations of  I. monticola .

  Likewise, the sex chromosome pair detected in  I. mon-
ticola  closely resembles that of other  Iberolacerta  species 
for which sex chromosomes have been described, i.e.  I. 
horvathi ,  I. cyreni  and  I. galani  [Capula et al., 1989; Odi-
erna et al., 1996; Arribas et al., 2006]. All of them possess 
a highly heteromorphic ZW pair, in which the W chro-
mosome is smaller than the Z and completely or almost 
completely heterochromatic. Nevertheless, greater simi-
larities are found between  I. monticola  and  I. galani.  In 
particular, the presence of a bright telomeric heterochro-
matic block in the Z chromosome is a feature that appears 
to be exclusive of both species. Even if the nature of the 
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sequences responsible for the heteromorphism in the sex 
chromosome pair is not known, reverse fluorochrome 
staining revealed at least certain differences in molecular 
composition, since heterochromatin in the Z chromo-
some resulted only positive after CMA 3  staining (simi-
larly to the weak C-bands at the ends of some autosomal 
pairs), while W chromosome heterochromatin was com-
pletely stained with both CMA 3  and DAPI.

  In general, the properties of sex chromosomes in  I. 
monticola  and the remaining  Iberolacerta  species may be 
concordant with the evolutionary model proposed for 
other lacertids [Olmo et al., 1987; Odierna et al., 1993]: 
the initial step of sex chromosome differentiation would 
be the accumulation of repetitive sequences on either ho-
mologue, leading to the formation of 2 heterochromatic 
areas, a proximal and a distal, as observed in the W chro-
mosome of  I. monticola . This may subsequently be fol-
lowed by structural rearrangements, such as deletions of 
heterochromatic regions not involved in sex determina-
tion, originating a heteromorphic sex chromosome pair 
in which the W is distinctly smaller than the Z. In this 
context, it would be of interest to verify whether the W 
chromosome of  I. galani , reported to be totally imbibed 
with heterochromatin [Arribas et al., 2006], certainly 
lacks the intercalary euchromatic region observed in the 
W chromosome of  I. monticola  and thus represents a 
more advanced stage of sex chromosome differentiation.

  Despite the common features of the ZW pair of these 
 Iberolacerta  species, it is likely that not all of the sex chro-
mosome systems in this genus followed the same evo-
lutionary pathway: multiple sex chromosome systems 
(Z 1 Z 1 Z 2 Z 2  male and Z 1 Z 2 W female), with W chromo-
somes at different degrees of heterochromatinization, 
have been found in  I. bonnali  and  I. aurelioi  [Odierna et 
al., 1996]. In addition, homomorphic and cytologically 
undetectable sex chromosomes are presumably present 
in  I. aranica  and  I. martinezricai  (online suppl. fig.  1) 
[Odierna et al., 1996; Arribas and Odierna, 2004]. More-
over, variation in the degree of sex chromosome differen-
tiation is found among species that diverged no more 
than 2.5 mya ( I. monticola ,  I. galani  and  I. martinezricai ).

  Such interspecific variability in the stage of degenera-
tion of the W chromosomes, with no clear phylogenetic 
correlation, is representative of the remarkable heteroge-
neity of sex chromosome systems reported for lacertid 
lizards (Chromorep: A reptile chromosomes database) 
[Olmo et al., 1986, 1987; Odierna et al., 1993], which sug-
gests that in this family, as in many reptile lineages, sex 
chromosomes can have multiple independent origins 
even in closely related taxa [e.g. Ezaz et al., 2009].

  Thus, considering that degradation of W chromosome 
and dosage compensation would evolve more slowly in 
ZW taxa, as compared with XY taxa [Naurin et al., 2010], 
and bearing in mind the advanced state of degeneration of 
the W chromosome in the basal  Iberolacerta  species,  I. hor-
vathi  [Capula et al., 1989], it seems probable that the pres-
ence of a heteromorphic ZZ/ZW pair is the ancestral con-
dition for this genus. Accordingly, it could be hypothe-
sized that the seemingly undifferentiated sex chromosomes 
in  I. martinezricai  and  I. aranica  might represent neo-sex 
chromosomes resulting from recent turnover events (e.g. 
the appearance of a new sex-determining gene on an auto-
some or the transposition of a sex-determining gene to a 
new chromosomal location), which would have replaced 
the preexisting heteromorphic ZW pair. Nonetheless, the 
putative absence of heteromorphic sex chromosomes in 
both species should be further investigated in detail.

  Future comparative cytogenetic analyses, along with 
the application of high-resolution molecular cytogenetic 
techniques, will therefore be necessary to deepen the 
knowledge about the degree and patterns of sex chromo-
some differentiation and the transitions between simple 
ZW and multiple Z 1 Z 2 W systems in the genus  Iberola-
certa , which ultimately would shed light on the mech-
anisms underlying sex chromosome evolution and the 
plasticity of sex determination systems in lacertid lizards.
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Two Satellite DNAs in Some
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ABSTRACT Satellite DNAs represent a large portion of all high eukaryotic genomes. They consist of numerous
very similar repeated sequences, tandemly arranged in large clusters up to 100 million base pairs in
length, usually located in the heterochromatic parts of chromosomes. The biological significance of
satDNAs is still under discussion, but most of their proposed functions are related to
heterochromatin and/or centromere formation and function. Because information about the
structure of reptilian satDNA is far from exhaustive, we present a molecular and cytogenetic
characterization of two satDNA families in four lacertid species. Two families of tandemly repeated
DNAs, namely TaqI and HindIII satDNAs, have been cloned and sequenced from four species
belonging to the genus Iberolacerta. These satDNAs are characterized by a monomer length of 171–
188 and 170–172 bp, and by an AT content of 60.5% and 58.1%, respectively. FISH experiments
with TaqI satDNA probe produced bright signals in pericentromeric regions of a subset of
chromosomes whereas all the centromeres were marked by HindIII probe. The results obtained in
this study suggest that chromosome location and abundance of satDNAs influence the evolution of
these elements, with centromeric families evolving tenfold faster than interstitial/pericentromeric
ones. Such different rates render different satellites useful for phylogenetic investigation at
different taxonomic ranks. J. Exp. Zool. (Mol. Dev. Evol.) 322B:13–26, 2014. © 2013 Wiley
Periodicals, Inc.
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Satellite DNAs (satDNAs) form a substantial part of eukaryotic
genomes and consist of tandemly repeated DNA sequences
typically arranged in large clusters of hundreds or thousands of
copies usually located in the heterochromatic regions of
chromosomes, mainly in the regions close to the centromeres
and telomeres. The biological significance of satDNAs remains
intriguing and challenging. The sequence conservation of some
satellites over long evolutionary times, the presence of differen-
tially expressed transcripts in several species and interactions with
centromeric‐specific proteins (e.g., the histone H3 variant CENH3)
suggest a biological role for some satellites, although this is not
fully understood (see Plohl et al., 2008; Plohl, 2010).
A satDNA family could arise in a phylogenetically short period

by explosive amplification (Bachmann and Sperlich, '93) and
afterwards its repeats could follow a gradual mode of sequence
evolution during a long evolutionary time (Bachmann and
Sperlich, '93). The processes by which satDNA families arise are
not well known. A set of molecular‐exchange mechanisms has
been proposed to account for its origin by amplification of a
tandem array of multi‐copy sequences. These mechanisms include
unequal crossing‐over (Smith, '76), transposition (Miller et al.,
2000), or extrachromosomal rolling‐circle replication and reinte-
gration of tandem arrays into the genome (Feliciello et al., 2006). A
recently originated tandem array is initially homogeneous in
sequence because of the multi‐copy amplification of the same
repeat. In the course of time, randommutations would accumulate
and the repeats would diverge. However, the nonallelic repeats of a
satDNA family do not evolve independently, but concertedly
leading to near homogeneity for species‐specific mutations
(Bachmann and Sperlich, '93; Rudd et al., 2006). This phenome-
non, known as concerted evolution, is achieved by a number of
genomic mechanisms, mainly unequal crossing‐over, biased gene
conversion, slippage replication, and amplification by rolling‐
circle (Dover, '82; Walsh, '87; Charlesworth et al., '94). However,
the rates of sequence change (homogenization and fixation) vary

for each satDNA family or even for the same satDNA family within
different lineages. Levels of sequence variation among repeats
would depend on factors such as mutation rate, inter‐ and
intrachromosomal recombination rates, copy number, array size
and structure, chromosomal distribution, chromosomal structure,
population size, divergence time, and reproductive mode; it is also
subject to random genetic drift and possibly natural selection
(Strachan et al., '85; Stephan and Cho, '94; Luchetti et al., 2003;
Navajas‐Pérez et al., 2005; Dawe and Henikoff, 2006; Kuhn
et al., 2007). The relative importance of each factor remains
controversial.
In this context, very little information exists on satDNA array

size, composition and long‐range organization, especially in
reptiles (see Giovannotti et al., 2009). An exception is represented
by Lacertidae, a species rich family of squamate reptiles,
widespread in the Palaearctic region (Sindaco and Jeremcenko,
2008). This family comprises the subfamilies Gallotiinae and
Lacertinae, with the latter comprising twomonophyletic tribes, the
Eremiadini of Africa and arid southwest and central Asia, and the
Lacertini of Europe (Arnold et al., 2007). So far, five satDNA
families have been described for the genome of the Lacertinae
subfamily: the pLCS (190 bp in length) is shared by the genera
Algyroides, Teira, Lacerta, and Podarcis (Capriglione et al., '89,
'91; Capriglione, 2000); the pLHS (140 bp) is specific for Podarcis
only (Capriglione et al., '94; Capriglione, 2000); the pGPS (185 bp)
is present in the genome of Podarcis and in species belonging to
the genera Archaeolacerta, Algyroides, Lacerta, and Zootoca
(Capriglione et al., '98), so that its appearance would precede the
divergence within the Lacertinae subfamily; the CLsat family is
described for the Caucasian genus Darevskia (145–147 bp,
Ciobanu et al., 2003; Grechko et al., 2006); the Agi160 is restricted
to the genus Lacerta (138–184 bp, Ciobanu et al., 2004; Grechko
et al., 2005). These satDNA families revealed several common
features, such as the same range of monomer lengths (140–
190 bp), AT content (tendency toward AT enrichment 50–65%)
and homopolymeric (A3–4 and T3–4) stretches (Capriglione et al.,
'91; Ciobanu et al., 2001, 2004). All these features were also found
in other nonreptilian satDNAs (see King and Cummings, '97).
The genus Iberolacerta (see Arribas, '99) has a disjunct range in

mountain areas of western Europe: a portion comprises central
Portugal, central and northern Spain and Pyrenees; another part
embraces western Alps and northern Dinaric chain. Until recently
the rock‐lizard populations endemic to the Iberian Peninsula were
considered to represent a single species, Lacerta monticola
Boulenger, 1905 (see Salvador, '85), that has recently been split
into the following taxa: Iberolacerta aranica, I. aurelioi, and
I. bonnali restricted to the Pyrenees and I. cyreni, I. galani,
I. martinezricai, and I. monticola, in the central‐western parts of
Iberian Peninsula (see Arribas et al., 2006). An additional species is
represented by the east‐Alpine and Dynaric species I. horvathi.
This classification was based on (i) morphological (biometry,
scalation), ostelogical, and karyological data; (ii) on the use of
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molecular tools, namely nuclear (c‐mos) and mitochondrial DNA
(12S and cytochrome b), and (iii) on the construction of
phylogenetic trees ranking the different allopatric populations
based on the degree of genetic divergence, with I. horvathi as the
most basal species (for a revision see Arribas et al., 2006). Another
conceptual framework influencing the species subdivision of these
largely allopatric lizards is the phylogenetic species concept,
according to which species are segments of a phylogenetic lineage
beyond nodes, irrespective of the degree of reproductive isolation
(for a criticism see Mace, 2004). Considering the well‐known
usefulness of satDNAs in facing phylogenetic issues (i.e.,
Martinsen et al., 2009), the aim of the present paper was to
isolate and characterise satDNA in some lacertid species in order to
(i) increase the knowledge of this genomic elements in an
important amniote group for which data on occurrence, genomic
distribution, and evolutionary rates are limited to a handful of
species; (ii) use the satDNAs isolated to verify the robustness of the
proposed phylogenetic reconstruction for some Iberolacerta taxa
on the light of independent molecular markers.

MATERIALS AND METHODS

Samples
Twomales and two females of Iberolacerta monticola (from Fragas
do Eume, ACapela, Galicia, Spain) and twomales and two females
of I. galani (from A Ponte, Pena Trevinca, AVeiga, Galicia, Spain)
were used to make metaphase chromosomes and to extract
genomic DNA. In addition, genomic DNA was extracted from
seven ethanol preserved specimens of I. cyreni from three different
Iberian locations (Navacerrada, Sierra de Guadarrama, Segovia‐
Madrid, Spain; Pico Zapatero, Sierra de la Paramera, Ávila; Puerto
de Peña Negra, Sierra de Villafranca, Ávila, Spain) and one of I.
martinezricai (Puerto El Portillo, Salamanca, Spain). Permissions
for field work and experimental procedures were issued by the
competent Spanish authorities: Xunta de Galicia (for I. monticola
and I. galani) (permission number 79/2008) and Junta de Castilla y
León (for I. cyreni and I. martinezricai) (permission numbers:
20051630007003/2005, 20061630024599/2006, 2007167004130/
2007, 20081630020386/2008, 20092390004760/2009). Finally,
genomic DNA of Lacerta bilineata, Podarcis muralis, P. siculus,
and Timon lepidus, was extracted from ethanol preserved tissues
of voucher specimens belonging to one of the authors (Vincenzo
Caputo Barucchi).

Isolation and Characterization of Satellite DNAs
Genomic DNA was extracted from whole blood, using standard
protocols with proteinase K digestion followed by phenol/
chloroform extraction (see Sambrook et al., '89). Fifteen restriction
endonucleases (AluI, ApaI, AvaII, BamHI, BcnI, BglI, BglII, DraI,
EcoRV, HindIII, MspI, RsaI, SmaI, TaqI, XbaI) (Fermentas
International, Inc., Burlington, ON, USA) were screened and
about 8mg of I. monticola and I. galani purified genomic DNA

were utilized for each digestion. Electrophoresis on 2% agarose gel
of the digested DNA revealed a band of about 170 bp for HindIII
and 190 bp for TaqI, corresponding to the monomeric unit of
repetitive DNA (Fig. 1A), whereas no clear bands were produced by
the remaining 13 endonucleases. The 170 and 190 bp fragments
were excised from agarose gel, purified with Pure Link Quick Gel
Extraction Kit (Invitrogen, Carlsabad, CA, USA) and cloned in the
pCR®‐blunt vector with Zero Blunt PCR Cloning Kit (Invitrogen)
following the manufacturer's recommendations. Ten clones of
each I. monticola satellite DNAs (HindIII and TaqI satDNAs
henceforth) and 13 (HindIII) and 16 (TaqI) of I. galani satDNAs
were sequenced on an ABI PRISM 3730XL (Applied Biosystems,
Foster City, CA, USA) automatic sequencer.
Digoxigenin‐labeled probes were produced by PCR amplifica-

tion of single clones and used in Southern hybridization
experiments to verify that the elements isolated were tandemly
arranged, as expected for satDNAs. In these experiments, HindIII
and TaqI digested genomic DNAs from I. monticola and other
lizards (I. cyreni, I. galani, I. martinezricai, Lacerta bilineata,
Podarcis muralis, P. siculus, Timon lepidus) were used in order to
assess the presence of these repetitive elements in other genera of
this family. The hybridization with the digoxigenin‐labeled
satDNA probes was performed at 50°C overnight with the Sure
Blot CHEMI Hybridization and Detection Kit (EMD Millipore Co.,
Billerica, MA, USA) following the manufacturer's recommenda-
tions. The hybridization was detected with the same kit.
The genomic abundance of satDNAs was estimated by

quantitative dot blot analysis. Dilutions of genomic DNA and
clones containing HindIII and TaqI satDNAs used as a standard
were blotted onto a nylon membrane with BIO‐DOT® micro-
filtration apparatus (Bio‐Rad Laboratories, Hercules, CA, USA),
following manufacturer's recommendations. In order to avoid
errors due to the differences in the hybridization kinetics,
sonicated salmon sperm DNA was used as a carrier and added
to each sample up to a final amount of 0.5mg DNA/sample (see
Cafasso et al., 2003). Hybridization was performed overnight at
45°C. The same clones as those used as a standard were employed
to produce digoxigenin‐labeled probes. The detection protocol
was carried out with the same protocol as the one used for
Southern hybridization.
From the sequences of the monomeres of I. monticola and I.

galani, HindIII and TaqI satDNAs two pairs of primers (HindIII‐F:
50‐TGAGTGTTTTACAGTTGAAAAGCT‐30; HindIII‐R: 50‐CATTGT-
GTTATTTGAGCGCAA‐30; TaqI‐F: 50‐ATTCTGACCCTGGGGGT-
TAG‐30; TaqI‐R: 50‐CATATTTAAAGAAATCAGGCCTCG‐30) were
designed and used for isolation of these satellites from the
genomes of the other two Iberolacerta species. PCR products from
the amplification of Iberolacerta genomic DNAs with above
primers were run on 2%agarose gel, the band corresponding to the
amplified monomers excised from the gel, purified with Pure Link
Quick Gel Extraction Kit (Invitrogen) and cloned in the pCR®‐
blunt vector with Zero Blunt PCR Cloning Kit (Invitrogen)
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following manufacturer's recommendations. Clones of HindIII
and TaqI satDNAs were sequenced on an ABI PRISM 3730XL
(Applied Biosystems) automatic sequencer. These sequences were
then aligned in CLUSTAL W (Larkin et al., 2007), using default
parameters. The visual inspection of sequence alignments was
carried out to check for the presence of shared nucleotide changes,
which could serve as diagnostic positions to define subsets
(subfamilies) within each satDNA family. A GenBank search was
performed in order to compare HindIII and TaqI satDNAs with
other satDNAs in the database.

Maximum parsimony (MP), neighbor joining (NJ), maximum
likelihood (ML), and Bayesian analyses (BA) were used to infer the
phylogenetic relationships among sequences of each satDNA. MP
consensus trees (50% majority rule) were constructed with PAUP�

version 4.0b10 (Swofford, 2002) using the heuristic search method
with 1,000 random‐addition‐sequence replicates, tree‐bisection‐
reconnection (TBR) branch swapping and holding 100 trees at each
cycle of the stepwise‐addition procedure. To increase the number
of informative characters, gaps were coded as binary (presence/
absence) characters.

Figure 1. Comparisons of consensus sequences ofHindIII (a) and TaqI (b) between the four Iberolacerta species analysed. Repeated motifs are
highlighted. sfI: HindIII satDNA subfamily I; sfII: HindIII satDNA subfamily II. Dots refer to nucleotide identity and dashes indicate indels.

J. Exp. Zool. (Mol. Dev. Evol.)

16 GIOVANNOTTI ET AL.

198



NJ analyses were performed in MEGA version 5 (Tamura et al.,
2011). The NJ trees were based on distances obtained by the
maximum composite likelihood method, with pairwise deletion
and 1,000 bootstrap replicates. ML analyses were conducted in
MetaPIGA v.2.1.3 (http://www.metapiga.org) (Helaers and Mil-
inkovitch, 2010) using the metapopulation genetic algorithm
(metaGA) with probability consensus pruning among four
populations of four individuals each. The best‐fitting nucleotide
substitution models [Jukes–Cantor (JC) for HindIII satDNA and
Hasegawa–Kishino–Yano plus Gamma (HKYþG) for TaqI
satDNA] were selected based on the Likelihood Ratio Test
implemented in this software. Branch support values that
approximate the posterior probability distribution of the corre-
sponding branches were estimated by performing a minimum of
100 replicated metaGA searches that were stopped when the mean
relative error (MRE) among 10 consecutive consensus trees
remained below 5%. BA were carried out using the software
MrBayes v.3.2.1 (Ronquist and Huelsenbeck, 2003). As in the MP
analyses, gaps were coded as binary characters and included as a
separate data partition in the matrix. A binary model (lset
coding¼ variable) was applied to the coded gaps, whereas the
previously selected models of sequence evolution, JC and
HKYþG, were applied to the DNA partitions of HindIII and
TaqI satDNAs, respectively. The analyses included two separate
concurrent Monte Carlo Markov Chain (MCMC) runs, each
composed of four chains (one cold, three heated). Each Markov
chain was started from a random tree and run for up to 106

generations, sampling every 500 generations. Stationarity was
assessed using the software Tracer v.1.5 (Rambaut and Drum-
mond, 2009). Samples obtained during the first 25% generations
were discarded as burn‐in, and the remaining data were used to
generate a majority‐rule consensus tree where the percentage of
samples recovering any particular clade of the consensus tree
represented the clade's posterior probability.
Intraspecific nucleotide diversity (p) was estimated using

DnaSP v. 5 (Librado and Rozas, 2009). Net average genetic
distances between groups were calculated under the appropriate
substitutionmodel for each satDNA family (see above) withMEGA
v. 5. Rates ofHindIII and TaqI satDNAs evolution were determined
according to the divergence times estimated for the four
Iberolacerta species here investigated by Arribas et al. (2006).
The occurrence of genetic differentiation between the four

species analyzed was assessed with the analysis of molecular
variance (AMOVA) (Excoffier et al., '92) calculating F‐statistics.
This test was performed at two hierarchical levels to test how
satDNAs sequence variability was distributed within species and
among species, for both HindIII and TaqI satDNAs. The test was
based on pair wise genetic distances between clones and
performed as implemented in ARLEQUIN 2.000 (Schneider
et al., 2000), using 1,000 permutations.
The repeats of the analyzed species were compared using

satDNA Analyzer version 1.2 (Navajas‐Pérez et al., 2007). This

program allows the discrimination between shared and nonshared
polymorphic sites. The program identifies polymorphic sites shared
between two species when the same polymorphism is found in both
species. When this occurs, we assume that these are ancestral sites
that appeared before the split between the two species (Navajas‐
Pérez et al., 2005). By contrast, nonshared polymorphic sites are
autapomorphies, representing different transitional stages in the
process of intraspecific sequence homogenization and interspecific
divergence. Under the assumption that concerted evolution is a
time dependent process, the expected stages of transition during
the spread of a variant repeat unit toward its fixation can be
defined according to the model of Strachan et al. ('85). This is a
method of partitioning the variation by analyzing the patterns of
variation at each nucleotide site considered independently among
all the repeats of a repetitive family when comparing a pair of
species (Strachan et al., '85; Navajas‐Pérez et al., 2007). This
method examines the distribution of nucleotide sites among six
stages (Classes I–VI) in the spread of variant repeats through the
family and the species. Briefly, the Class I site represents complete
homogeneity across all repeat units sampled from a pair of species,
whereas Classes II, III, and IV represent intermediate stages in
which one of the species shows a polymorphism. The frequency of
the new nucleotide variant at the site considered is low in Class II
and intermediate in Class III, while Class IV represents sites in
which a mutation has replaced the progenitor base in most
members of the repetitive family in the other species. Class V
represents diagnostic sites in which a new variant is fully
homogenized and fixed in all the members of one of the species
while the other species retains the progenitor nucleotide. AClass VI
site represents an additional step over the stage of Class V (new
variants appear in some of themembers of the repetitive family at a
site fully divergent between the two species). The statistical
significance (P‐value) of the variation in the relative proportions of
Strachan transitions stages among different interspecific compar-
isons was evaluated using chi‐square heterogeneity tests that were
performed in the interactive online calculator available at http://
www.quantpsy.org/chisq/chisq.htm (Preacher, 2001).

Chromosome Analysis
For metaphase preparations, about 50ml of blood were taken from
I. monticola and I. galani individuals with a sterile heparinized
syringe and cultured in CO2 incubators using the culture
conditions indicated by Ezaz et al. (2005). Metaphase preparations
were obtained by exposing cell cultures to 75 ng/ml of
Demecolcine (Sigma‐Aldrich Co., St Louis, MO, USA) for 4 hr
before harvesting (Ezaz et al., 2005). Cells were hypotonized in KCl
0.75M for 30min at 37°C, prefixed by adding several drops of
freshly prepared methanol:acetic acid fixative (3:1), then fixed
through three changes of fixative. Suspensions of fixed cells were
dropped onto microscope slides and air dried at room temperature.
Fluorescence in situ hybridization (FISH) experiments were

performed on metaphase preparations using (i) a telomeric probe
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(TTAGGG)n produced by PCR according to Ijdo et al. ('91), and (ii)
the probes obtained by PCR amplification of TaqI and HindIII
satDNA clones. Telomeric and TaqI probes were also used in two‐
color FISH experiments. The probes were labeled by PCR either
with biotin‐16‐dUTP (Roche) or digoxigenin‐11‐dUTP (Roche
Diagnostics GmbH, Mannheim, Germany). Slide pretreatment,
denaturation, hybridization, post‐hybridization washes, and
detection were performed according to Schwarzacher and
Heslop‐Harrison (2000). The HindIII satDNA and telomeric probes
were evidenced with fluorescein iso‐thyocianate (FITC) and
tetramethyl rhodamine iso‐thyocianate (TRITC), respectively.
Chromosomes were observed with a Nikon Eclipse 800 epifluor-
escence microscope and the images were captured and processed
with a Leica CytoVision version 7.2 system.
In order to define the relationships between satDNAs and the

constitutive heterochromatin, C‐banding was performed on
metaphase plates following Sumner ('72). The relations between
AT‐rich heterochromatic regions and satDNAs were determined
by staining C‐banded metaphases with 40,6‐diamidino‐2‐phenyl-
indole (DAPI) (Schweizer, '76).

RESULTS

Isolation and Characterization of Satellite DNAs
The digestion of I. monticola and I. galani genomic DNA with
HindIII and TaqI restriction enzymes revealed bands correspond-
ing to a monomer of a repetitive element of about 170 and 190 bp,
respectively (not shown). PCR amplification using primers
designed by aligning I. monticola and I. galani sequences of
both satDNAs was successful in individuals representing the other
two lineages of Iberolacerta recognized as distinct species (I.
martinezricai, I. cyreni). The length of the 45 clones sequenced for
HindIII ranged between 170 and 172 bp, whereas the length of the
42 clones sequenced for TaqI ranged between 171 and 188 bp
(Table 1). Sequences of both satDNAs were deposited in GenBank

(HindIII accession numbers: from KF453637 to KF453681; TaqI
accession numbers: from KF453682 to KF453723). When HindIII
and TaqI satDNA sequences were subjected to a BLASTN search,
no significant similarities with sequences deposited in databases
were found.
Southern blot analysis revealed hybridization of both satDNA

probes onto Iberolacerta monticola digested genomic DNA with a
ladder‐like pattern, indicating the tandem arrangement of
repeating units which is typical of satDNAs. A strong hybridiza-
tion signal was also produced on the other three Iberolacerta
species whit both HindIII and TaqI probes; this latter probe also
produced a clear signal on the other lizards tested, whereas no
signal appeared when HindIII probe was hybridized on repre-
sentatives of the genera Lacerta, Podarcis, and Timon (not shown).
Quantitative dot blot analysis revealed that HindIII satDNA

represents around 10% of I. monticola and I. galani, and 5% of I.
cyreni and I. martinezricai genomes. TaqI satDNA represents 5%
of I. cyreni, I. galani, and I. monticola genomes, and 2.5% in I.
martinezricai (data not shown). The estimation of the number of
repeats was not possible because the genome size of these lizards is
not known.
The consensus sequences of the two satDNAs were very similar

in the four Iberolacerta species, with an AT average content of
58.4% forHindIII and 60.3% for TaqI, indicating an enrichment in
AT (Table 1). Both satellites repeats are characterized by the
occurrence of short motifs such A and T stretches and
dinucleotides steps TG and CA, with more numerous and longer
A (T) stretches in TaqI satDNA (Fig. 1), as expected from its higher
AT content. Within HindIII satDNA, two monomer variants or
subfamilies (I and II) were detected in I. galani and I. monticola
(Fig. 1A). The consensus sequences of subfamily I in both species
were virtually identical to the consensus of I. martinezricai,
whereas subfamily II showed several (nine) randomly distributed
diagnostic nucleotide substitutions, as well as three exclusive
indels located in the terminal region of the monomer. Both

Table 1. Summary of repeat features and p values.

Species

HindIII TaqI

n %AT Repeat length p n %AT Repeat length Nucleotide diversity (p)

I. cyreni 11 57.0 171 0.0055� 0.0022 9 60.2 186–187 0.0384� 0.0058
I. galani 13 58.9 170–171 0.0358� 0.0033 16 60.1 186–187 0.0475� 0.0070
I. galani (sfI) 6 59.4 171 0.0175� 0.0031
I. galani (sfI) 7 58.5 170 0.0101� 0.0020
I. monticola 10 59.0 170–171 0.0187� 0.0035 10 60.8 171–188 0.0569� 0.0062
I. monticola (sfI) 9 59.0 171 0.0062� 0.0019
I. monticola (sfI) 1 58.8 170 —

I. martinezricai 10 58.7 171–172 0.0105� 0.0052 7 60.1 187–188 0.0428� 0.0114

Number of monomeric repeats sequenced (n), nucleotide composition of repeats (AT), length of repeats (expressed in base pairs), and nucleotide diversity
(p)� SE for both satDNAs for each Iberolacerta species investigated. sfI: HindIII satDNA subfamily I; sfII: HindIII satDNA subfamily II
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monomer variants were present in similar proportions in the
sequence data set of I. galani, but only one out of ten sequences in
I. monticola belonged to subfamily II (Table 1).
The phylogenetic tree obtained from the Bayesian analysis of

HindIII satDNA is shown in Figure 2. The four different
phylogenetic analyses (NJ, MP, ML, and BA) yielded very similar
topologies, with some minor incongruences. Two major clades
were recovered with maximum support, one harbouring I. cyreni
clones and the other the sequences of the remaining three
Iberolacerta species. Within this second cluster, monomers of

subfamily II constitute a well‐supported clade sister to that formed
by sequences belonging to subfamily I, [with the exception of two
clones from I. galani (IGA_32 and IGA_39) that share some private
nucleotide substitutions]. Within subfamily I, relationships
between most monomers were poorly resolved and they were
not grouped according to the species of origin.
The Bayesian tree constructed using the sequences of TaqI

satDNA was largely unresolved, regardless of the phylogenetic
method employed, showing that this satellite cannot discriminate
effectively the four Iberolacerta species here investigated (Fig. 3).

Figure 2. Bayesian phylogenetic tree depicting the the phylogenetic relationships between the 45 monomeric units of HindIII satDNA
sequenced. Support values obtained by four different methods of analysis are shown at each node; from left to right: Bayes posterior
probability (100�), metaGA branch support values (100�), NJ‐bootstrap (%), and equally MP trees (%). A hyphen was inserted whenever a
particular method did not support the Bayesian topology. Numbers after the species names are experimental number for clone identification.
ICY: Iberolacerta cyreni; IGA: Iberolacerta galani; IMO: Iberolacerta monticola; IMR: Iberolacerta martinezricai.
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Even though several well‐supported subclusters including
conspecific monomers were recognized, the number of diagnostic
mutations shared by these sequences was too low to be considered
species‐specific TaqI satDNA subfamilies (not shown).
The p values indicated that intraspecific sequence heterogene-

ity is higher for TaqI satDNA (from 3.84% in I. cyreni to 5.69% in I.
monticola) than for HindIII satDNA (from 0.55% in I. cyreni to
3.58% in I. galani) (Table 1). Interspecific mean net distances are
low and similar for both satellites when I. cyreni is excluded from
the analysis of HindIII satDNA (from 0.04% between I. monticola
subfamily I and I. martinezricai to 5.60% between I. galani
subfamily II and I. martinezricai for HindIII, and from 0.90%
between I. galani and I. martinezricai to 1.30% between I.
monticola and I. galani for TaqI satDNA) (Tables 2 and 3). Pair wise

comparisons of HindIII satDNA involving I. cyreni and the other
Iberolacerta analyzed, showed distance values substantially
higher, between 8.40% and 13.90% (Table 2).
In addition, higher levels of sequence divergence were obtained

in the comparisons between subfamilies I and II ofHindIII satDNA
in I. galani (4.5%) than in the comparisons between monomeric
repeats belonging to subfamily I in different species (from 0.04%
to 0.4%) (Table 2).
The evolutionary rate of these two satellites was then calculated

based on sequence divergence between I. cyreni and the other
three species, that were considered as a single taxonomic unit not
being discriminated by either satellite. The values found are 1.2%
for HindIII and 0.14% for TaqI, indicating an evolutionary rate
almost 10‐fold faster for the former.

Figure 3. Bayesian phylogenetic tree depicting the the phylogenetic relationships between the 42 monomeric units of TaqI satDNA
sequenced. Support values obtained by four different methods of analysis are shown at each node; from left to right: Bayes posterior
probability (100�), metaGA branch support values (100�), NJ‐bootstrap (%) and equally MP trees (%). A hyphen was inserted whenever a
particular method did not support the Bayesian topology. Numbers after the species names are experimental number for clone identification.
ICY: Iberolacerta cyreni; IGA: Iberolacerta galani; IMO: Iberolacerta monticola; IMR: Iberolacerta martinezricai.
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The poor phylogenetic differentiation of these species based on
the sequences of the satDNAs here isolated was confirmed by
AMOVA analysis. When this test was performed on the HindIII
sequences, most of the percentage of the molecular variation was
distributed among species (69.60%; FST 0.69596, P< 0.0001)
whereas the percentage of variation within species was much
lower, but still significant (30.40%;FST 0.69596, P< 0.001) (Table
4). The variance among species became much lower (32.07%; FST

0.32072, P< 0.001) and the one within populations became the
preponderant variance component (67.93%; FST 0.32072,
P< 0.001) when the sequences of I. cyreni were excluded from
the analysis (Table 4). This result can be explained by the fact that
I. cyreni was recovered as a distinct cluster with a high support in
the phylogeny based onHindIII sequences, whereas the other three
cannot be discriminated by this molecular marker. The AMOVA
test carried out on TaqI satDNA sequences produced results very
similar to those obtained with HindIII sequences after excluding I.
cyreni, with a preponderant variance component distributed

within species (82.69%; FST 0.17314, P< 0.001), confirming that
this satDNA cannot effectively discriminate between these
Iberolacerta species (Table 4). These results emerged also by
analyzing the pattern of variation at each nucleotide position
considered independently among all HindIII repeats (Table 2).
Indeed, when comparing I. cyreni with the other species, a high
percentage of Strachan sites belonging to the categories IV, V, and
VI were found (average¼ 9.9%), while 5.1% of sites per repeat
were Strachan transition stages (IIþ III), and no shared polymor-
phic sites were observed. Conversely, for TaqI satDNA sites of the
classes IV–VI were very few (average¼ 0.5%) in all the
comparison, while 20.7% of the sites represented Strachan stages
II–III and an average of 4.1% were polymorphic sites (Table 3).
According to the chi‐square heterogeneity test, these differences
in the relative proportions of Strachan transition stages between
HindIII and TaqI satDNAs are highly significant (P< 0.001).
The relatively high degree of genetic differentiation detected in

the analysis of sequence divergence between HindIII subfamily II

Table 2. Interspecific and intersubfamily comparative analysis of HindIII repeats

Species comparison SP (%) Strachan sites II–III (%) Strachan sites IV–VI (%) Genetic distance

HindIII
I. cyreni versus I. galani (sfI) 0 (0%) 4 (2.3%) 15 (8.8%) 0.0838� 0.0232
I. cyreni versus I. galani (sfII) 0 (0%) 5 (2.9%) 21 (12.3%) 0.1388� 0.0326
I. cyreni versus I. monticola (sfI) 0 (0%) 5 (2.9%) 16 (9.4%) 0.1025� 0.0265
I. cyreni versus I. martinezricai 0 (0%) 5 (2.9%) 15 (8.8%) 0.0996� 0.0258
I. galani (sfI) versus I. monticola (sfI) 1 (0.59%) 7 (4.1%) 1 (0.59%) 0.0038� 0.0025
I. galani (sfI) versus I. martinezricai 2 (1.2%) 6 (3.5%) 1 (0.59%) 0.0034� 0.0026
I. monticola (sfI) versus I. martinezricai 2 (1.2%) 4 (2.3%) 0 (0%) 0.0004� 0.0005
I. galani (sfII) versus I. monticola (sfI) 0 (0%) 8 (4.7%) 9 (5.3%) 0.0545� 0.0190
I. galani (sfII) versus I. martinezricai 0 (0%) 8 (4.7%) 9 (5.3%) 0.0555� 0.0192
I. galani (sfI) versus I. galani (sfII) 0 (0%) 6 (3.5%) 10 (5.8%) 0.0447� 0.0160

The table reports number and percentage of shared polymorphic sites (SP); variable nucleotide sites classified according to Strachan et al. ('85); net genetic
distances (Jukes–Cantor method) in pair wise comparisons of species. sfI: HindIII satDNA subfamily I; sfII: HindIII satDNA subfamily II.

Table 3. Interspecific comparative analysis of TaqI repeats.

Species comparison SP (%) Strachan sites II–III (%) Strachan sites IV–VI (%) Genetic distance

TaqI
I. cyreni versus I. galani 8 (4.3%) 51 (27.3%) 3 (1.6%) 0.0099� 0.0040
I. cyreni versus I. monticola 9 (4.8%) 25 (13.4%) 1 (0.5%) 0.0113� 0.0040
I. cyreni versus I. martinezricai 7 (3.7%) 25 (13.4%) 2 (1.1%) 0.0109� 0.0039
I. galani versus I. monticola 10 (5.3%) 43 (23%) 1 (0.5%) 0.0130� 0.0057
I. galani versus I. martinezricai 5 (2.7%) 57 (30.5%) 3 (1.6%) 0.0089� 0.0037
I. monticola versus I. martinezricai 7 (3.7%) 31 (16.6%) 2 (1.1%) 0.0114� 0.0040

The table reports number and percentage of shared polymorphic sites (SP); variable nucleotide sites classified according to Strachan et al. ('85); net genetic
distances (maximum composite likelihood method) in pair wise comparisons of species.
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and subfamilies I from I. galani, I. monticola, and I. martinezricai
was also evident in the comparisons of Strachan transition stages
among these groups (Table 2). No shared polymorphisms were
found and the number of sites falling in classes IVand V (between
5% and 6%) was significantly larger (P< 0.001) than the average
frequency of these “differentiated sites” in the comparisons among
subfamilies I in different species.

Chromosome Analysis
FISH experiments with HindIII satDNA probe on metaphase
chromosomes of I. galani and I. monticola revealed that this
repetitive element is widespread in the genome of these species,
occurring at centromeres of all the 36 chromosomes of the diploid
complement (Fig. 4A,B), with no differences between males and
females. The occurrence of “bouquet” figures where chromosomes
are linked together at the level of centromeres seems to indicate
that this satDNA is involved in the interchromosome connection
during mitosis (Fig. 4B). FISH with TaqI satDNA probe produced
bright signals in interstitial position in a subset of 18
chromosomes in I. galani and 20 in I. monticola. No differences
between males and females were detected with this probe either
(Fig. 4C,D). Results of FISH experiments are consistent with the
genomic abundance of HindIII and TaqI satDNAs as showed by
quantitative dot blot analysis for these two species, with the
former around twofold more abundant than the latter.
FISH with a telomeric probe (TTAGGG)n produced a fluorescent

signal at telomeres of all the chromosomes. Besides telomeric
signals, also interstitial telomeric sites (ITS) were marked in about
five chromosome pairs. When a two‐color FISH with both
telomeric and TaqI satellite probes were performed, the fluorescent
signals of ITS resulted distally located to the satellite ones
(Fig. 4D).
C‐banding, performed in order to assess the relationships

between the isolated satellites and constitutive heterochromatin,

revealed that in Iberolacerta the chromosomal distribution of
HindIII satDNA overlaps the centromeric heterochromatic blocks,
whereas TaqI probe colocalizes with pericentromeric heterochro-
matin (Fig. 4E,F).

DISCUSSION
Satellite DNAs represent rapidly evolving genomic elements, and
therefore, even among most closely related species, they usually
differ in nucleotide sequence, copy number, and/or composition of
satellite families (Csink and Henikoff, '98). However, some satDNA
families evolve more slowly than others and occur in several
closely related species with different degrees of sequence
similarity (Bachmann and Sperlich, '93; Mantovani et al., '97;
Watabe et al., '97). Some satDNAs seem to be rather ancient and
are widely distributed among higher taxa (Modi et al., 2004;
Robles et al., 2004). Consequently, some satDNAs may be valuable

Table 4. AMOVA analysis.

Source of variation
Variance

components
Percentage of
variation

Among species 4.21275 69.60
1.07719 32.07
1.14218 17.31

Within species 1.84035 30.40
2.28152 67.93
5.45487 82.69

The test was carried on HindIII satDNA sequences including the four species
selected for this study (first line of each hierarchical level), and removing
Iberolacerta cyreni from the analysis (second line of each hierarchical level).
The test on TaqI satDNA sequences included all four of the Iberolacerta
investigated (third line of each hierarchical level). F‐statistics were highly
significant in all comparisons (P< 0.001).

Figure 4. FISH with HindIII probe onto metaphases from females
of Iberolacerta galani (A) and I. monticola (B). FISH with TaqI probe
onto a metaphase of I. galani female (C). Two‐color FISH with
telomeric (red) and TaqI (green) probes on a metaphase of I.
monticola female (D). C‐banding on I. monticola male (E) and I.
galani female (F) metaphases. The W chromosome of I. galani is
indicated by an arrow.
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taxonomic identification tools while others might be useful for
phylogenetic analyses at higher taxonomic levels. In the present
study, we compared sequences of two different satDNA families
(HindIII and TaqI) in four closely related lacertid species,
allopatrically distributed in mountain areas of the Iberian
Peninsula. These satDNAs seem to evolve at different rates in
the studied lizards, with HindIII showing a 10‐fold faster
evolutionary rate than TaqI. Indeed, Southern blot analysis using
Iberolacerta satellite probes revealed a clear hybridization pattern
also in other lizard genera (namely, Lacerta, Podarcis, and Timon)
only for TaqI repeats, whereas HindIII seems to be restricted to the
genus Iberolacerta. However, a significant level of genetic
divergence was detected only in comparisons involving I. cyreni
whenHindIII satDNAwas considered. For this satDNA, analysis of
turnover dynamics indicate the effectiveness of the molecular
drive process, after species split, in the spreading of new sequence
variants leading to intraspecific homogeneity (0.56% of sequence
variation within I. cyreni) and interspecific divergence (around 9%
of sequence divergence between I. cyreni and the other species), an
evolutionary pattern known as concerted evolution (Dover, '82).
The fact that the other species are scarcely differentiated atHindIII
repeats can be interpreted in two alternative ways: (i) it may
represent the outcome of the relatively recent (approximately
2mya, Arribas et al., 2006) and rapid succession of speciation
events within this group. In fact, previous molecular analyses
based on nuclear and mitochondrial markers also failed to resolve
the phylogenetic relationships or even track lineage splitting at
this taxonomic level (Mayer and Arribas, 2003; Carranza et al.,
2004; Crochet et al., 2004; Arribas et al., 2006; Arnold et al., 2007);
(ii) the specific status for these three taxa might not have been
reached yet. Indeed, estimation of divergence times among these
three Iberolacerta species are similar to those recorded for different
populations of the lizard Podarcis muralis that diverged
genetically in separate refuges during glaciations, currently not
showing evidence for reproductive isolation (Giovannotti et al.,
2010).
The deep divergence observed between I. cyreni and the other

Iberolacerta species here investigated with HindIII satellite is in
good accordance with the molecular phylogenies published so far
(Mayer and Arribas, 2003; Carranza et al., 2004; Crochet et al.,
2004; Arribas et al., 2006; Arnold et al., 2007). This analysis
showed that this species was the most diverged clade of the tree,
with an estimated splitting time of about 7.5 million years. The
relatively scarce representation of transitional stages (only 5% of
the nucleotide positions) might suggest that the concerted
evolution mechanisms have led to sequence differentiation
between I. cyreni and the other species, probably due to the
efficiency of the molecular‐exchange homogenizing mechanisms
among chromosomes.
The occurrence of two different types of monomeric variants or

subfamilies was described for HindIII satDNA sequences. These
subfamilies were defined according to a set of particular

nucleotide substitutions or indels, in two of the four species
examined. However, given the almost simultaneous speciation
processes between I. monticola, I. galani, and I. martinezricai, it
seems unlikely that subfamily II constitutes a specific variant of I.
monticola and I. galani. An interspecific analysis of the pattern of
nucleotide change was not possible for subfamily II due to the lack
of a representative number of sequences in I. monticola or I.
martinezricai. Even so, our results show that both subfamilies are
presumably evolving independently, as indicated by the substan-
tially high percentage of transitions stages IV and V between the
monomers of subfamily II (I. galani) and the sequences of
subfamily I, either belonging to I. galani, I. monticola, or I.
martinezricai. The coexistence and divergent evolution of satellite
subfamilies in the genomes of these species could be in agreement
with the Nijman and Lenstra model (2001), in which mutations
inhibiting the interactions of repeat units in a satellite family
would lead to sequence diversification and the independent
amplification or contraction of concurrent sequence variants.
Nevertheless, a more extensive survey of HindIII satDNA will be
the subject of further studies, in order to assess the presence and
abundance of both monomeric variants in other Iberolacerta
species, as well as to elucidate the processes driving the evolution
of this satellite family.
Conversely to HindIII sequences, the tandem arrays of TaqI

show a low sequence change rate when comparing I. cyreni with
the other Iberolacerta. In fact, we detected a low rate of sequence
change (0.1% perMyr), a rate 10‐fold lower than that estimated for
HindIII sequences (about 1.2% perMyr) and only 1.1% of Strachan
stages IV–VI compared to 18% of II–III stages. In addition, we also
observed some shared polymorphic sites and a comparatively
higher intraspecific heterogeneity, suggesting that most of the
intraspecific variability in each species is ancestral, originated
prior to the separation of these lineages; moreover, the high
number of transitional stages of differentiation (Strachan stages
II–III) suggest that after the allopatric isolation, processes of
concerted evolution were less efficient than in the HindIII repeats.
In addition, contrarily to HindIII, Southern hybridization with
TaqI probe produced a clear signal also in other lacertid genera,
like Lacerta, Podarcis, and Timon, also suggesting a strong
conservation of this satellite DNA family.
Various factors were invoked to explain different evolutionary

turnover rates between satDNA families, like interchromosomal
and intrachromosomal recombination rates, copy number, array
size and structure, chromosomal distribution, chromosomal
structure, population size, divergence time and reproductive
mode. Moreover, evolutionary conservation of satDNA repeats
might be a likely indication of functional constraints and natural
selection (see Plohl et al., 2008). Unfortunately, very few examples
are found in the literature with both fast‐evolving and slow‐
evolving satDNAs found within the same species. For instance, in
the genus Dolichopoda, a comparison among three satDNA
families showed a trend of sequence variability and copy number
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being positively correlated, and a trend of sequence variability and
length of repeats being negatively correlated (Martinsen et al.,
2009). Like inDolichopoda, it seems that also in the studied lizards
an increase in copy number is linked to a trend of sequence
homogenization. In fact, it was observed that HindIII repeats
represent between 5% and 10% of the Iberolacerta genome, while
TaqI satDNA between 2.5% and 5%. The different chromosome
localization of the two satellites may also play a role in the
different rate of sequence homogenization recorded for the two
satDNA families. First of all, it should be noted thatHindIII repeats
are centromerically located on all the acrocentric chromosomes of
I. galani and I. monticola karyotypes. In fact, it is reported that
satellite DNAs at centromeres of acrocentric chromosomes show
greater homology and a higher rate of homogenization than in
noncentromeric locations or nonacrocentric chromosomes
(Jantsch et al., '90; Bandyopadhyay et al., 2001). It has been
hypothesized that homogenization occurs through physical
association and crossing‐over between nonhomologous chromo-
somes (Ohno et al., '61). Indeed, acrocentric chromosomes
associate at the heterochromatic regions during meiotic
prophase and somatic interphase (Schmid et al., '83; Tuck‐Muller
et al., '84; Kuznetsova et al., 2007) and we also observed typical
“bouquet” figures, where chromosomes are linked together at
the level of centromeres (Fig. 4B). This process may be the
most important mechanisms for spontaneous chromosomal
mutation, concerted evolution, and homogenization of satellite
subfamilies of DNA among acrocentric chromosomes (Maeda and
Smithies, '86).
Conversely, TaqI repeats are pericentromerically located on a

lower number of chromosomes (10 pairs in I. monticola and 9 in I.
galani). In this case, we could explain the low homogenization rate
within single species in terms of primary rate of the homogeniza-
tion process. That is, it is possible that the exchange between
nonhomologous chromosomes having TaqI sequences is limited.
The TaqI repeats are indeed restricted to a subset of chromosomes
in these species and located in a pericentromeric position less
prone to physical association: this could reduce interchromosomal
exchange and homogenization, thus determining a lower rate of
interspecific divergence and a higher degree of intraspecific repeat
heterogeneity. Similar considerations were reported for satDNAs
of Rumex, where repeats in nonrecombining Y chromosomes show
low rates of concerted evolution and intraspecific variability
increase with no interspecific divergence (Navajas‐Pérez et al.,
2009; see also Kuhn et al., 2008), and to explain the lower
mutation rate of satDNAs in sturgeons as compared to sparids. In
fact, the more symmetrical karyotypes of these latter fishes would
represent no physical barrier to interchromosomal exchange (de la
Herrán et al., 2001a,b). However, also these AT‐rich pericentro-
meric repeats could represent chromosome sites favoring
spontaneous rearrangements. Indeed, we observed that the
majority of the TaqI repeats are flanked by interstitial telomeric
sequences that would insert in these chromosome points during

the repair of double strand breaks (see Bolzán and Bianchi, 2006).
These unstable sequences might explain the high rate of
Robertsonian translocation observed in Pyrenean Iberolacerta
(Odierna et al., '96).
In conclusion, our study suggests the effect of differential

location and repeat copy number in the evolution of satDNAs,
revealing features that could also improve the use of this genomic
component as a molecular marker in phylogenetic analyses.
Moreover, these results indicate that some molecular markers
should be used cautiously in species identification when
divergence times are shallow among the taxa compared.
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Abstract Satellite DNAs compose a large portion of all
higher eukaryotic genomes. The turnover of these highly
repetitive sequences is an important element in genome
organization and evolution. However, information about
the structure and dynamics of reptilian satellite DNA is
still scarce. Two satellite DNA families, HindIII and TaqI,
have been previously characterized in four species of the
genus Iberolacerta. These families showed different

chromosomal locations, abundances, and evolutionary
rates. Here, we extend the study of both satellite DNAs
(satDNAs) to the remaining Iberolacerta species, with
the aim to investigate the patterns of variability and
factors influencing the evolution of these repetitive
sequences. Our results revealed disparate patterns but
also common traits in the evolutionary histories of these
satellite families: (i) each satellite DNA is made up of a
library of monomer variants or subfamilies shared by
related species; (ii) species-specific profiles of satellite
repeats are shaped by expansions and/or contractions of
different variants from the library; (iii) different turnover
rates, even among closely related species, result in great
differences in overall sequence homogeneity and in
concerted or non-concerted evolution patterns, which
may not reflect the phylogenetic relationships among
taxa. Contrasting turnover rates are possibly related to
genomic constraints such as karyotype architecture and
the interspersed organization of diverging repeat
variants in satellite arrays. Moreover, rapid changes in
copy number, especially in the centromeric HindIII
satDNA, may have been associated with chromosomal
rearrangements and even contributed to speciation within
Iberolacerta.

Keywords Concerted evolution . FISH . Iberolacerta .

Library model . Satellite DNA . Squamate reptiles

Abbreviations
Cy3 Cyanine 3
dNTP Deoxyribonucleotide triphosphate

Chromosome Res
DOI 10.1007/s10577-015-9489-1

Responsible Editors: Maria Assunta Biscotti, Pat Heslop-Harrison
and Ettore Olmo.

Electronic supplementary material The online version of this
article (doi:10.1007/s10577-015-9489-1) contains supplementary
material, which is available to authorized users.

V. Rojo :A. Martínez-Lage :A. M. González-Tizón :
H. Naveira (*)
Grupo de Investigación en Bioloxía Evolutiva, Departamento de
Bioloxía Celular e Molecular, Universidade da Coruña,
E-15071 A Coruña, Spain
e-mail: horacio.naveira.fachal@udc.es

M. Giovannotti : P. N. Cerioni :V. C. Barucchi : E. Olmo
Dipartimento di Scienze della Vita e dell’Ambiente, Università
Politecnica delle Marche, via Brecce Bianche, 60131 Ancona,
Italy

V. C. Barucchi
Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine
Sezione Pesca Marittima, Largo Fiera della Pesca, 60125 Ancona,
Italy

P. Galán
Grupo de Investigación en Bioloxía Evolutiva, Departamento de
Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da
Coruña, E-15071 A Coruña, Spain

Author's personal copy

211

http://crossmark.crossref.org/dialog/?doi=10.1007/s10577-015-9489-1&domain=pdf
http://dx.doi.org/10.1007/s10577-015-9489-1


FCA Factorial correspondence analysis
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FITC Fluorescein iso-thyocianate
Mya Million years ago
π Nucleotide diversity
satDNA Satellite DNA

Introduction

Satellite DNAs (satDNAs) represent one of the major
classes of repetitive sequences in almost all eukaryotic
genomes. They consist of tandemly repeated non-coding
DNA sequences, typically arranged in large clusters of
hundreds or thousands of copies usually located in the
heterochromatic regions of chromosomes, close to the
centromeres and telomeres (Charlesworth et al. 1994).
Several satDNA families of independent origin are
commonly found in the genome of a species or
group of species, and they usually differ in nucleotide
sequence, monomer length, and complexity, as well as
in evolutionary history (Ugarković and Plohl 2002;
Kuhn et al. 2008, 2010). The biological function of
these sequences is not yet fully understood, although
numerous reports point out the role of certain satellites
in centromeric condensation, chromosome organization,
or chromosome pairing (see Plohl et al. 2008). A growing
field of research is also addressing the role of satDNA
transcripts in the formation and maintenance of hetero-
chromatin and even in regulation of gene expression
(Ugarković 2009; Pezer et al. 2012). In addition, several
examples support the hypothesis that the rapid evolution
of satDNAs can act as a driver of population and species
divergence (Ugarković and Plohl 2002; Feliciello et al.
2015).

Despite their biological significance, satDNAs are
still the least understood genomic component, underrep-
resented in outputs of most genome projects (Plohl et al.
2012). A common feature of many of them is that, even
though monomers can be present in many thousand
copies per genome, sequence divergence between
repeats of the same family is often very low, usually
less than 15 % (Plohl et al. 2008). The non-independent
or concerted evolution of repeat units is postulated to be
a consequence of a two-step process called molecular
drive, consisting of the gradual spread of a sequence
variant (1) through a genome (homogenization) and (2)
through a species (fixation) (Dover 1982). Sequence

homogenization is due to diverse molecular mechanisms
of nonreciprocal transfer, such as unequal crossing-over,
gene conversion, rolling circle replication and reinsertion,
and transposon-mediated exchange (Stephan 1986;
Dover 2002), while fixation results from random chro-
mosomal assortment in sexual reproduction, depending
thus on population factors. This process results in rapid
divergence of satellite sequences in reproductively isolated
groups of organisms, and in this case, satDNAs can be
used as phylogenetically informative markers (Plohl et al.
2012).

Accumulation of mutations in satellite families is not
the only way to alter specific profiles of satellite repeats
in short evolutionary periods. In addition to sequence
changes, satDNAs are permanently altered in copy
number by expanding and contracting arrays of satellite
monomers (Ugarković and Plohl 2002; Plohl et al.
2012). Because usually more than one satellite family
exists in a genome, fluctuations in their copy numbers
can change very efficiently and rapidly any profile of
genomic satDNA. The library model of satDNA
evolution explains the occurrence of species-specific
satellite profiles as a result of differential amplifications
and/or contractions within a collection, or library, of
satellite sequences shared by related species (Fry and
Salser 1977; Meštrović et al. 1998; Ugarković and Plohl
2002). Not only distinct satDNAs but also monomer
variants or subfamilies from a single family can be
distributed in genomes in the form of a library (Cesari
et al. 2003).

SatDNAs have been extensively studied in insects
(Palomeque and Lorite 2008) and mammals
(Enukashvily and Ponomartsev 2013), and less so in
other taxa, although there are several exceptions.
Squamata, by far the largest reptile order, is one of them
(see, for example, Giovannotti et al. 2009, 2013;
Chaiprasertsri et al. 2013). It includes the Lacertidae, a
widespread species-rich group restricted to the Palearctic
region, formed by two subfamilies, Gallotiinae and
Lacertinae (Arnold et al. 2007; Sindaco and Jeremčenko
2008). So far, five satDNA families have been described
in Lacertinae, with different taxonomic distributions.
Three satellite families are genus-specific, namely, pLHS
in Podarcis (Capriglione et al. 1994; Capriglione 2000),
CLsat in Darevskia (Ciobanu et al. 2003; Grechko et al.
2006), and Agi160 in Lacerta (Ciobanu et al. 2004;
Grechko et al. 2005). The other two families, on the
contrary, are broadly distributed in Lacertinae: pLCS,
shared by Algyroides, Teira, Lacerta, and Podarcis
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(Capriglione et al. 1989, 1991; Capriglione 2000), and
pGPS, present in Podarcis, Archaeolacerta,
Algyroides, Lacerta, and Zootoca (Capriglione
et al. 1998).

In a previous work (Giovannotti et al. 2014) we
isolated two new satDNA families in the lacertid genus
Iberolacerta, a monophyletic group of rock lizardsmainly
distributed in highland areas of Western Europe. This
genus comprises eight species, which can be subdivided
into three main units: (1) I. horvathi, occurring in the
Eastern Alps and the north of the Dinaric Chains; (2) the
subgenus Pyrenesaura, which includes the three species
found in the Pyrenees, (I. aranica, I. aurelioi, and
I. bonnali); and (3) the four species included in the
BIberian group^ (I. cyreni, I. martinezricai, I. galani,
and I. monticola), with disjunct distributions in central
and northern mountain ranges of the Iberian Peninsula.
Previous cytogenetic surveys of the Iberolacerta species
(Capula et al. 1989; Odierna et al. 1996; Arribas and
Odierna 2004; Arribas et al. 2006; Rojo et al. 2014)
showed them to possess a diploid number of 2n=36,
and a similar karyotypic macrostructure, with all chromo-
somes acrocentric. Only the karyotypes of the three
Pyrenean species differ from this formula, with reduced
diploid numbers that range from 2n=24 to 26 in males
and from 2n=23 to 26 in females, and many biarmed
chromosomes that probably evolved from the ancestral
acrocentric complement through a series of Robertsonian
fusions (Odierna et al. 1996).

According to the most recently published phylogeny
(Arribas et al. 2014), speciation within Iberolacerta
started ca. 13.5 million years ago (Mya; 95 % credibility
interval 11.6–15.6), with the split between the clades
formed by I. horvathi and the Iberian group, on one side,
and by the Pyrenean species, on the other. This event was
most likely quickly followed by the separation of
I. horvathi, which took place approximately 11.5 Mya
(9.6–13.7). Within the Iberian group, I. cyreni split earlier
(7.3–8.5 Mya), while the speciation events within the
clade formed by I. martinezricai, I. galani, and
I. monticola occurred considerably later, at the beginning
of the Pleistocene, 2.1–2.9 Mya. The three Pyrenean
species probably originated in rapid succession ca. 3.8
Mya (2.7–4.9), although this phylogenetic analysis
suggests that I. bonnali split first, shortly before
the separation between I. aranica and I. aurelioi, 3.3
Mya (2.3–4.3). Notwithstanding minor uncertainties
still remaining, the mapping of satDNA differences on
that species tree is likely to provide valuable information

about the time and mode of evolution of these repetitive
sequences. In our previous work (Giovannotti et al.
2014), we analyzed two unrelated satDNA arrays in
the Iberian clade of Iberolacerta: (1) the centromeric
HindIII family, which comprises two subfamilies (I and
II) and represents 5–10 % of the genome and (2) the
TaqI family, which shows only interstitial loci and
represents 2.5–5 % of the genome. The nucleotide
sequences of the two families were presumably evolving
at different rates, almost tenfold higher for centromeric
than for instertitial repeats, after comparing I. cyreni vs.
the other, relatively closer, species of the Iberian clade. In
agreement with this conclusion, the HindIII family seems
to be specific to the genus Iberolacerta (Capriglione et al.
1989, 1991, 1998; Capriglione 2000), whereas the TaqI
satDNA has also been detected in representatives of three
other genera of the subfamily Lacertinae (Lacerta,
Podarcis, and Timon).

Here, we extend the study of both satDNAs to the
remaining Iberolacerta species, and increase our dataset
for HindIII satDNA, to further investigate the occurrence
of two divergent subfamilies in the genomes of all these
taxa. The results obtained offer a more complete portrait
of the intra- and interspecific variability of these highly
repetitive sequences and their genomic organization and
chromosomal distribution, with the ultimate objective of
contributing to assess the relative strength of the processes
that determine their structure and mode of evolution.

Material and methods

Animals

Genomic DNA was isolated from a total of 20 speci-
mens, representing all eight Iberolacerta species. The
number of specimens per species and their geographical
origin are given in Supplementary Table 1. In addition,
one male and one female of I. horvathi and one female
of I. bonnali were used to make metaphase
chromosomes.

DNA extraction, PCR, cloning and sequencing

Genomic DNA was extracted from ethanol preserved
tissues using standard protocols with proteinase K
digestion followed by phenol/chloroform extraction
(see Sambrook et al. 1989). Two primer pairs
designed in our previous work (HindIII-F: 5′-
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TGAGTGTTTTACAGTTGAAAAGCT-3′; HindIII-
R: 5′-CATTGTGTTATTTGAGCGCAA-3′; TaqI-F:
5′-ATTCTGACCCTGGGGGTTAG-3′; TaqI-R: 5′-
CATATTTAAAGAAATCAGGCCTCG-3′) were
used for isolation of both satellite families from
the genomes of I. horvathi, I. bonnali, I. aranica,
and I. aurelioi. An additional primer pair was
designed to specifically amplify HindIII-subfamily
II in all eight Iberolacerta species (Hind_sfII-F: 5′-
CTCTTGCTTATTTCGCTCCAAATGA-3 ′ ;
Hind_sfII-R: 5′-ATTTCTGTGTGCAGCATGCAT
TGG-3′). PCR reactions were performed in a final
volume of 25 μl containing ~25 ng of genomic
DNA, 0.625 U of Taq DNA polymerase and 1×
PCR buffer (Roche Diagnostics), 5 nmol of each
dNTP (Roche Diagnostics), and 20 pmol of each
primer. The general reaction conditions were as
follows: initial denaturation at 94 °C for 5 min;
35 cycles of denaturation at 94 °C for 30 s,
annealing at the following temperatures (HindIII-
F/HindIII-R, 55 °C; TaqI-F/TaqI-R, 47 °C;
Hind_sfII-F/Hind_sfII-R, 58 °C) for 30 s, exten-
sion at 72 °C for 30–60 s, and a final extension at
72 °C for 7 min. The obtained PCR products were
run on 1.5 % agarose gels; DNA in bands of
interest was eluted using Pure Link Quick Gel
Extraction Kit (Invitrogen) and cloned in the
T&A cloning vector with T&A cloning kit
(Yeastern Biotech) following manufacturer ’s
recommendations. Positive clones were selected
through PCR amplification using the M13 forward
and M13 reverse primers. Bidirectional sequencing
with the M13 primers was performed on an ABI
PRISM 3730XL (Applied Biosystems) automatic
sequencer.

Sequence analysis

The newly sequenced repeats were analyzed together
with the previously reported sequences of the HindIII
and TaqI satDNA families from I. cyreni, I. monticola,
I. galani, and I. martinezricai (DDBJ/EMBL/GenBank
accession numbers for HindIII: from KF453637 to
KF453681; accession numbers for TaqI: from
KF453682 to KF453723) (Giovannotti et al. 2014).
Multiple sequence alignment was performed with
MUSCLE (Edgar 2004), using default parameters, as
implemented in Geneious version 8.0.5 (Kearse et al.
2012). After visual inspection of alignments, sequences

were classified into different sets according to shared
nucleotide changes and indels.

Intraspecific nucleotide diversity (π) was estimated
using DnaSP v. 5 (Librado and Rozas 2009). Net
average genetic distances between groups were
calculated using the Maximum Composite Likelihood
model (Tamura et al. 2004) in MEGA v. 6.0
(Tamura et al. 2013). Sequence variability among
satellite repeats was further investigated by
performing a factorial correspondence analysis
(FCA), carried out with Genetix v. 4.05.2 (Belkhir
et al. 2004). For this analysis, we constructed a
matrix with all the sequences, where the nucleotide
present at each diagnostic position was coded with a
unique integer (100, 120, 140, or 160).

For the subsequent phylogenetic analysis, a
consensus sequence was obtained for each
sequence set by choosing the most frequent nucleotide
at each position, except when a combination of
dinucleotides of the three pairs CpG, CpA, and
TpG was present at the same doublet position. In
that case, the CpG dinucleotide was chosen as the
consensus unless the T or A nucleotides were
present in >70 % of the sequences. A phylogenetic
network of the consensus sequences was constructed
with TCS v. 1.21 (Clement et al. 2000) using the
statistical parsimony algorithm under the 95%parsimony
criterion (Templeton et al. 1992).

Chromosome analysis

Metaphase chromosome spreads were prepared as
described previously (Giovannotti et al. 2014). As for
I. horvathi, individuals of this species were induced to
autotomize their tail tips, the tissues were collected in
the field following the protocol by Waters et al. (2008)
and transferred to the laboratory for the establishment of
primary cell cultures. For fluorescence in situ hybridi-
zation (FISH) experiments, we developed species-
specific probes obtained by PCR amplification of
HindIII and TaqI satDNA clones. The probes were
labeled either with Cy3, using a PCR labeling kit (Jena
Bioscience), or with FITC, using the Platinum Bright
495 labeling kit (KREATECH Biotechnology). Slide
pretreatment, denaturation, hybridization, post-
hybridization washes, and detection were performed
according to Schwarzacher and Heslop-Harrison
(2000). Images were captured using the epifluorescence
microscopes (Nikon Microphot-FXA; Leica Leitz
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DMRBE) equipped with monochrome cameras (Nikon
DS-Qi1Mc; JAI CV-M4+CL). The NIS-Elements D
3.10 (Nikon Instruments) and Leica CytoVision version
7.2 (Leica Microsystems) softwares were used to
process the images and reconstruct the karyotypes.

Results

Isolation and characterization of satellite DNAs

PCR amplification using primers specific for HindIII
and TaqI satDNA was successful in all tested species
and produced a ladder-like banding pattern, which is
typical for satellite DNA. PCR products included com-
plete monomers and multimers (from dimers up to
hexamers), flanked by partial monomer sequences. Only
clones with complete repeat units were sequenced and,
for further analyses, multimers were separated into
individual monomers. A total of 187 new sequences were
obtained for HindIII, whereas 109 clones were
sequenced for TaqI. Comparison of these new sequences
with the HindIII and TaqI monomers isolated from
I. cyreni, I. monticola, I. galani, and I. martinezricai in
our previous study (Giovannotti et al. 2014) indicated
that all of them belong to the same satDNA families.
Altogether, our dataset comprises 232 HindIII and 151
TaqI monomers from all eight Iberolacerta species,
which are likely to reflect the overall variability of the
two satellite families in the genus.

Both HindIII and TaqI satDNAs are characterized by
an AT bias (average AT content of 58.9 and 59.1 %,
respectively) and by the occurrence of short repeat
motifs such as A and T stretches, dinucleotide TG and
CA, and trinucleotide CAA and TTC (Supplementary
Figs. 1a, b). The size of HindIII repeats ranged between
169 and 172 bp, with the exception of two monomers
with lengths of 151 bp (IAR_99b) and 161 bp
(ICY_209c) (Table 1). TaqI repeats showed a broader
range of length variation, from 155 to 191 bp (Table 1).
Several indels varying in size from 1 to 31 bp are the
causes of the repeat length variation in this satDNA
family.

After alignment, monomers within each satDNA
family were classified into subfamilies, according to
the state of diagnostic positions, characterized by
nucleotide substitutions or indels shared by at least
90 % of all the members grouped in the same subfamily.
The subfamilies were designated with Roman numerals

following the nomenclature previously used in
Giovannotti et al. (2014) for HindIII subfamilies I and
II. Additional diagnostic positions further divided each
subfamily into several sequence groups and subgroups,
denoted by a Latin letter and a numeral, respectively,
after the subfamily name (Table 2).

Sequence variability within HindIII satDNA

Within HindIII satDNA, we found a total of 30 diag-
nostic positions, which identified three subfamilies—
namely HI, HII, and HIII—and 27 sequence groups
(Table 2a and Supplementary Fig. 1a). Their abun-
dances ranged from 1.3 to 17 % (3–39 representatives)
of the examined sequences. Figure 1a overlies data on
the abundance and distribution of HindIII sequence
groups onto a phylogenetic tree for Iberolacerta derived
from mitochondrial markers (Arribas et al. 2014). As
evidenced in this figure, sequence groups were not
equally represented in the different species. The
Pyrenean species (I. aurelioi, I. aranica, and
I. bonnali) harbor a wide diversity of HindIII repeats,
mainly belonging to subfamilies HI and HII. Only 12
monomers were retrieved from I. horvathi, and they are
all members of subfamily HI. Similarly, subfamily HI is
also the most abundant variant of the HindIII family in
the Iberian species I. martinezricai, I. monticola, and
I. galani. A strikingly different profile of HindIII repeats
was found in I. cyreni, also an Iberian species, which is
characterized by the presence of several private
sequence groups belonging to subfamily HIII and one
exclusive sequence group within subfamily HI.

The coexistence of more than one subfamily explains
the higher nucleotide diversity values (π) in species such
as I. bonnali (4.91%) or I. aurelioi (3.96%), in
comparison with the values obtained for those species
in which all their HindIII repeats belonged to a single
subfamily, i.e., I. horvathi (1.16%) and I. martinezricai
(1.51%) (Table 1). Interestingly, despite their different
abundances, mean π values for each subfamily were
roughly similar (from 2.30 % in subfamily HII to
2.54 % in subfamily HIII).

The factorial correspondence analysis (FCA) based
on diagnostic positions highlighted the differentiation
among the three HindIII subfamilies, lending further
support to our classification. Altogether, the three main
axes of variation explain 96.53 % of the observed
variation (Fig. 2a). The most informative is axis 1
(69.70 %), which identifies two main clusters,
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corresponding to subfamily HIII repeats of I. cyreni
and I. bonnali on one side, and to subfamilies HI
and HII on the other. Axis 2, which accounts for
24.60 % of the observed variation, separates
subfamilies HI and HII. Finally, axis 3, with
2.23 % of the observed variation, probably
corresponds to sequence heterogeneity within each
subfamily. The clustering of HindIII repeats revealed
by the FCA matches the estimates of interspecies
and inter-subfamilies net genetic distances, shown
in Table 3a. Monomers of subfamily HIII are the

most divergent, with average genetic distances of
7.50 and 9.90 % from subfamily HI and HII,
respectively. These values are substantially higher
than the average distance between subfamilies HI
and HII (around 4.0 %). When I. cyreni is excluded
from the analysis, pairwise interspecies genetic
distances within each subfamily are all very low
and uncorrelated with relative divergence times
between species, with average values of 1.0 % within
subfamily HIII, 0.34 % within subfamily HII, and
0.33 % within subfamily HI. Net genetic distances

Table 1 Summary of repeat features of HindIII and TaqI satDNA

HindIII TaqI

Species Subfamily n Repeat length Nucleotide
diversity (π)

Subfamily n Repeat length Nucleotide
diversity (π)

I. monticola All combined 34 0.0151±0.0018 All combined 10 0.0600±0.0089

HI 30 171 0.0142±0.0023 TI 10 171–188 0.0600±0.0089

HII 4 170 0.0177±0.0060

I. galani All combined 31 0.0331±0.0040 All combined 16 0.0489±0.0001

HI 23 171 0.0148±0.0019 TI 16 186–188 0.0489±0.0001

HII 8 169–170 0.0211±0.0082

I. martinezricai All combined 33 0.0151±0.0018 All combined 7 0.0541±0.0103

HI 33 171–172 0.0151±0.0018 TI 7 187–188 0.0541±0.0103

I. cyreni All combined 40 0.0356±0.0037 All combined 9 0.0406±0.0001

HI 7 0.0180±0.0030 TI 9 186–187 0.0406±0.0001

HIII 33 161–171 0.0240±0.0029

I. horvathi All combined 12 0.0116±0.0028 All combined 33 0.1218±0.0079

HI 12 171 0.0116±0.0028 TI 31 167–191 0.1184±0.0083

TII 2 189 - 191 0.0699±0.0349

I. aurelioi All combined 25 0.0396±0.0034 All combined 20 0.0976±0.0086

HI 14 171 0.0290±0.0048 TI 1 187

HII 11 170 0.0262±0.0026 TII 19 177–188 0.0908±0.0074

I. aranica All combined 22 0.0355±0.0043 All combined 34 0.1209±0.0070

HI 7 151–171 0.0265±0.0055 TI 14 175–190 0.1082±0.0126

HII 15 170 0.0164±0.0028 TII 20 177–190 0.0960±0.0059

I. bonnali All combined 35 0.0491±0.0050 All combined 22 0.1204±0.0096

HI 17 171 0.0257±0.0027 TI 17 155–188 0.1060±0.0102

HII 15 169–170 0.0230±0.0076 TII 5 177–190 0.0983±0.0156

HIII 3 171 0.0195±0.0033

All species combined HI 143 0.0241±0.0015 TI 105 0.1342±0.0060

HII 53 0.0230±0.0018 TII 46 0.0961±0.0044

HIII 36 0.0254±0.0029

TOTAL 232 0.0539±0.0020 TOTAL 151 0.1567±0.0038

Number of monomeric repeats sequenced (n), length of repeats (expressed in base pairs), and nucleotide diversities (π)±S.E. for both
satDNAs for each Iberolacerta species investigated

V. Rojo et al.

Author's personal copy

216



T
ab

le
2

N
uc
le
ot
id
e
di
ff
er
en
ce
s
am

on
g
th
e
co
ns
en
su
s
se
qu
en
ce
s
of

th
e
di
ff
er
en
tg

ro
up
s
of

(a
)
H
in
dI
II
su
bf
am

ili
es

H
I,
H
II
,a
nd

H
II
I,
an
d
(b
)
Ta
qI

su
bf
am

ili
es

T
I
an
d
T
II
.T

he
se
co
nd

ro
w

re
fe
rs
to

ba
se

po
si
tio

ns
re
la
tiv

e
to

th
e
al
ig
nm

en
t
sh
ow

n
in

S
up
pl
em

en
ta
ry

Fi
g.

1a
(H

in
dI
II
)
an
d
1b

(T
aq
I)
.T

he
ge
ne
ra
l
co
ns
en
su
s
se
qu
en
ce

of
ea
ch

sa
tD
N
A
w
as

us
ed

as
re
fe
re
nc
e.
D
ot
s

in
di
ca
te
id
en
tit
y
w
ith

th
is
re
fe
re
nc
e
se
qu
en
ce

a)

1
2

3
4

6
7

8
10

11
12

13
14

15
17

18
19

20
Po

si
tio

ns
14

15
21

27
38

39
56

73
83

84
85

86
87

95
98

99
10
1

C
on
se
ns
us

T
C

A
T

T
T

C
A

A
A

T
T

T
C

T
G

A
H
I_
A

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
H
I_
B

.
.

.
C

.
.

.
.

.
.

.
.

.
.

.
.

.
H
I_
C

.
.

.
.

.
.

.
.

.
.

C
.

.
.

.
.

.
H
I_
D
1

.
.

.
.

.
.

T
.

.
.

.
.

.
.

.
.

.
H
I_
D
2

.
.

G
.

.
.

T
.

.
.

C
.

.
.

.
.

.
H
I_
E

.
.

.
.

.
.

.
.

.
C

C
.

.
.

.
.

.
H
I_
F

.
.

.
.

.
.

T
.

.
.

.
.

.
.

.
.

.
H
I_
G

.
.

.
C

.
.

.
.

.
.

C
.

.
.

.
.

.
H
I_
H

.
.

.
C

.
.

.
.

.
C

C
.

.
.

.
.

.
H
I_
I

.
G

.
.

.
.

.
.

.
.

C
.

.
.

.
.

.
H
I_
J

.
G

.
.

.
.

.
.

.
C

C
.

.
.

.
.

.
H
I_
K

.
.

.
.

.
.

T
.

.
.

.
.

.
.

.
.

.
H
I_
L

.
.

.
C

.
.

T
.

.
.

.
.

.
.

.
.

.
H
I_
M

.
.

.
C

.
G

T
.

.
.

.
.

G
.

.
.

.
H
II
_A

.
.

.
.

.
.

T
.

C
.

.
.

.
.

.
.

.
H
II
_B

.
.

.
C

.
G

T
.

C
.

.
.

.
.

.
.

G
H
II
_C

.
.

.
.

.
.

T
.

C
.

.
.

.
.

.
.

.
H
II
_D

.
.

G
.

C
.

.
.

C
.

.
.

.
.

.
.

.
H
II
_E

A
.

G
.

C
.

.
.

C
.

.
.

.
.

.
.

.
H
II
_F

.
.

G
.

C
.

.
.

C
.

.
.

.
.

.
.

.
H
II
_G

.
.

G
.

C
.

T
.

C
.

.
.

.
.

.
.

G
H
II
_H

.
.

G
.

C
.

.
.

C
.

.
.

.
.

.
.

G
H
II
I_
A

.
.

.
C

.
G

T
G

C
.

.
.

G
A

C
A

.
H
II
I_
B

.
.

.
C

.
G

T
G

C
.

.
.

G
A

C
A

.
H
II
I_
C

.
.

.
C

.
G

T
G

C
.

.
.

G
A

C
A

.
H
II
I_
D

.
.

.
C

.
G

T
G

C
.

.
G

G
A

C
A

.
H
II
I_
E

.
.

.
C

.
G

T
G

C
.

.
G

G
A

C
A

.
b)

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

Po
si
tio

ns
1

5
6

9
14

16
17

18
19

20
21

22
31

33
43

54
56

58
59

60
61

66
71

72
C
on
se
ns
us

C
G

C
G

C
T

A
A

C
C

T
A

A
C

C
T

T
C

C
A

G
G

C
G

T
I_
A
1

.
.

.
.

.
.

C
.

G
G

.
.

.
.

T
.

C
.

.
G

C
.

T
.

T
I_
A
2

.
.

.
.

.
.

C
.

G
G

.
.

.
.

T
.

C
.

.
G

C
.

T
.

T
I_
B
1

.
.

.
.

.
.

C
.

G
G

.
.

.
.

T
.

C
.

.
.

C
.

T
.

T
I_
B
2

.
.

.
.

.
.

C
.

G
G

.
.

.
.

.
.

.
.

.
.

.
.

.
.

T
I_
C
1

G
.

T
T

.
.

C
.

T
.

.
G

.
.

.
.

.
.

.
.

.
.

.
.

Evolution of two satellite DNAs in Iberolacerta

Author's personal copy

217



T
ab

le
2

(c
on
tin

ue
d)

T
I_
C
2

.
.

.
.

.
.

C
.

T
.

.
.

G
.

.
.

.
.

.
.

.
.

.
.

T
I_
D

.
.

.
.

.
.

.
.

.
T

.
.

G
.

.
.

.
.

.
.

.
.

.
.

T
I_
E

.
.

.
.

.
.

G
.

.
G

.
T

G
.

.
.

.
.

.
.

.
.

.
.

T
I_
F
1

.
.

.
.

.
.

G
.

.
.

.
.

G
.

.
.

.
.

.
.

.
.

.
.

T
I_
F
2

.
.

.
.

.
.

G
.

.
.

C
.

G
.

.
.

.
.

.
.

.
.

.
.

T
I_
G
1

.
.

.
.

.
.

G
T

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

T
I_
G
2

.
.

.
C

.
.

G
T

.
.

.
.

.
.

.
.

C
.

.
.

.
.

.
.

T
I_
H
1

.
.

.
.

.
.

.
.

A
A

.
.

G
.

.
.

.
.

.
.

.
C

.
C

T
I_
H
2

.
.

.
.

.
.

T
.

A
A

.
.

G
.

T
.

.
.

.
.

.
C

.
C

T
I_
I1

.
.

.
.

.
.

.
.

A
A

.
.

G
.

.
.

.
.

T
.

T
C

.
A

T
I_
I2

.
.

.
.

.
.

T
.

A
A

.
.

G
.

.
.

.
.

T
.

T
C

.
A

T
I_
J1

.
.

.
.

.
.

.
.

A
A

.
.

G
.

.
.

.
.

.
.

.
C

.
A

T
I_
J2

.
.

.
.

.
.

T
.

A
A

.
.

G
.

.
.

.
.

.
.

.
C

.
A

T
I_
K

.
.

.
.

.
.

.
.

A
A

.
.

G
.

.
.

.
.

.
.

.
C

.
C

T
I_
L
1

.
.

.
.

.
.

.
.

A
A

.
.

G
.

.
.

.
.

.
.

.
C

.
C

T
I_
L
2

.
.

.
.

.
.

.
.

A
A

.
.

G
.

.
.

.
.

.
.

.
C

.
A

T
I_
L
3

.
.

.
.

.
.

.
.

A
A

.
.

G
.

.
.

.
.

.
.

.
.

.
A

T
II
_A

.
.

.
.

T
C

.
T

.
.

.
.

.
G

.
.

.
.

.
.

.
.

.
.

T
II
_B

1
.

.
.

.
T

C
.

T
.

.
.

.
.

G
.

C
.

T
.

.
.

.
T

.
T
II
_B

2
.

.
.

.
T

C
.

T
.

.
.

.
G

.
.

C
.

T
.

.
.

.
T

.
T
II
_C

1
.

.
.

.
T

T
.

T
.

.
.

.
.

G
.

C
.

T
.

.
.

.
T

.
T
II
_C

2
.

.
.

.
T

C
.

T
.

.
.

.
.

G
.

C
.

T
.

.
.

.
T

.
T
II
_D

.
.

.
.

T
C

.
T

.
G

.
.

.
G

.
C

A
T

.
.

.
.

T
.

T
II
_E

1a
.

.
.

.
T

C
.

T
.

.
.

G
.

.
.

C
.

T
.

.
.

.
T

.
T
II
_E

1b
.

.
.

.
T

C
.

T
.

.
.

G
.

.
.

C
.

T
.

.
.

.
T

.
T
II
_E

2
T

.
.

.
T

C
.

T
.

.
.

G
.

.
.

C
.

T
.

.
.

.
T

.
T
II
_F

.
.

.
.

T
C

.
T

.
.

.
.

.
.

.
C

.
T

.
.

.
.

T
.

T
II
_G

1
.

.
.

.
T

C
.

T
.

.
.

.
.

G
.

C
.

T
.

.
.

.
T

.
T
II
_G

2a
T

.
T

.
T

C
.

T
.

.
.

.
.

A
.

C
.

T
.

.
.

.
T

.
T
II
_G

2b
T

.
T

.
T

C
T

T
.

.
.

.
.

.
.

C
.

T
.

.
.

.
T

.
T
II
_G

3
.

T
.

.
T

C
.

T
G

.
.

.
.

G
.

C
.

T
.

.
.

.
T

.
T
II
_G

4
T

A
.

.
T

C
.

T
.

.
.

.
.

.
.

C
.

T
.

.
.

T
T

.

a)

21
22

23
24

26
27

28
29

30
31

32
33

35

Po
si
tio

ns
11
3

11
4

11
7

11
9

12
9

14
0

14
4

14
5

14
7

14
9

15
0

15
1

16
5

C
on
se
ns
us

G
A

T
A

T
G

C
A

A
G

A
G

-

H
I_
A

.
.

.
.

.
.

.
.

.
.

.
.

-

H
I_
B

.
.

.
.

.
.

.
.

.
.

.
.

-

H
I_
C

.
.

.
.

.
.

.
.

.
.

.
.

-

H
I_
D
1

.
.

.
.

.
.

.
.

.
.

.
.

-

V. Rojo et al.

Author's personal copy

218



T
ab

le
2

(c
on
tin

ue
d)

H
I_
D
2

.
.

.
.

.
.

.
.

.
.

.
.

-

H
I_
E

.
.

.
.

.
.

.
.

.
.

.
.

-

H
I_
F

.
.

C
.

.
.

.
.

.
.

.
.

-

H
I_
G

.
.

.
.

.
.

.
.

.
.

.
.

-

H
I_
H

.
.

.
.

.
.

.
.

.
.

.
.

-

H
I_
I

.
.

.
.

.
.

.
.

.
.

.
.

-

H
I_
J

.
.

.
.

.
.

.
.

.
.

.
.

-

H
I_
K

.
.

C
.

.
A

.
.

.
.

.
.

-

H
I_
L

.
.

.
.

.
A

.
.

.
.

.
.

-

H
I_
M

.
.

.
.

.
.

.
.

.
.

.
.

-

H
II
_A

.
.

C
.

.
A

-
-

T
T

G
.

A

H
II
_B

.
.

G
.

.
A

-
-

T
T

G
.

A

H
II
_C

.
.

G
.

.
A

-
-

T
T

G
C

A

H
II
_D

.
.

G
.

.
A

-
-

T
T

G
C

A

H
II
_E

.
.

G
.

.
A

-
-

T
T

G
.

A

H
II
_F

.
.

G
.

.
A

-
-

T
T

G
.

A

H
II
_G

.
.

G
.

.
A

-
-

T
T

G
.

A

H
II
_H

.
.

G
.

.
A

-
-

T
T

G
.

A

H
II
I_
A

A
T

.
.

.
.

.
.

.
.

.
.

-

H
II
I_
B

A
T

.
.

C
A

.
.

.
.

.
.

-

H
II
I_
C

A
G

.
.

C
A

.
.

.
.

.
.

-

H
II
I_
D

A
G

.
.

C
A

.
.

.
.

.
.

-

H
II
I_
E

A
G

.
C

C
A

.
.

.
.

.
.

-

b)

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

Po
si
tio

ns
83

93
10
1

11
0

11
4

11
7

12
0

12
1

12
3

12
5

12
6

12
7

13
9

14
2

15
0

15
7

16
3

16
7

16
8

16
9

17
0

17
5

18
1

18
4

18
7

18
8

C
on
se
ns
us

G
T

T
G

G
T

T
G

T
A

A
A

C
G

T
C

A
A

G
T

T
G

T
G

G
T

T
I_
A
1

.
.

.
.

.
.

.
.

.
.

.
C

G
.

.
.

.
T

.
.

.
T

G
.

.
.

T
I_
A
2

.
.

.
.

.
.

.
.

.
.

.
C

G
.

.
.

.
T

.
.

.
T

G
.

C
.

T
I_
B
1

A
.

.
.

.
.

.
.

.
.

.
.

G
.

.
.

.
.

.
.

.
T

G
.

.
.

T
I_
B
2

.
.

.
.

.
.

.
.

.
.

.
.

G
.

.
.

.
T

.
.

.
.

G
.

.
.

T
I_
C
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
T

.
.

.
.

.
.

.
.

T
I_
C
2

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
T

.
.

.
.

.
.

.
.

T
I_
D

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
A

.
.

.
.

Evolution of two satellite DNAs in Iberolacerta

Author's personal copy

219



T
ab

le
2

(c
on
tin

ue
d)

T
I_
E

.
.

.
.

.
.

.
C

.
.

.
.

.
.

.
T

.
.

.
A

A
T

.
.

.
.

T
I_
F
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

T
I_
F
2

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

T
I_
G
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

T
I_
G
2

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

T
I_
H
1

.
.

.
.

A
.

C
A

G
.

.
.

.
.

.
.

.
.

.
.

.
T

.
.

.
.

T
I_
H
2

.
.

.
.

A
.

C
A

G
.

.
.

.
.

.
.

.
.

.
.

.
T

.
.

.
.

T
I_
I1

.
.

.
.

A
.

C
A

.
.

.
.

.
.

.
.

.
.

.
.

.
T

.
.

.
.

T
I_
I2

.
.

.
.

A
.

C
A

.
.

.
.

.
.

.
.

.
.

.
.

.
T

.
.

.
.

T
I_
J1

.
.

.
.

A
.

C
A

.
.

.
.

.
.

A
.

C
.

.
.

.
T

.
.

.
.

T
I_
J2

.
.

.
.

A
.

C
A

.
.

.
.

.
.

A
.

C
.

.
.

.
T

.
.

.
.

T
I_
K

.
.

.
.

A
.

C
A

.
.

.
.

.
C

.
.

.
.

.
.

.
T

G
.

.
.

T
I_
L
1

.
.

.
.

A
.

C
A

.
.

.
.

.
.

.
.

.
.

.
.

.
T

.
.

.
.

T
I_
L
2

.
.

.
.

A
.

C
A

.
.

.
.

.
.

.
.

.
.

.
.

.
T

.
.

.
.

T
I_
L
3

.
.

.
.

A
.

C
A

.
.

.
.

.
.

.
.

.
.

.
.

.
T

.
.

.
.

T
II
_A

.
.

.
.

.
.

.
.

.
.

.
.

G
.

.
.

-
-

-
.

.
.

.
C

.
G

T
II
_B

1
.

G
.

.
.

.
.

.
.

.
.

.
G

.
.

.
-

-
-

.
.

.
A

.
.

G

T
II
_B

2
.

G
.

.
.

.
.

.
.

.
.

.
G

.
.

.
-

-
-

.
.

.
A

.
.

G

T
II
_C

1
.

G
.

.
.

.
.

.
.

.
.

.
G

.
.

.
-

-
-

.
.

.
.

C
.

G

T
II
_C

2
.

G
.

.
.

.
.

.
.

.
.

.
G

.
.

.
-

-
-

.
.

.
.

C
.

G

T
II
_D

.
G

.
.

.
.

.
.

.
.

.
.

G
.

.
.

-
-

-
.

.
.

.
C

.
G

T
II
_E

1a
.

G
.

.
.

C
.

.
.

G
G

.
.

.
.

.
.

T
C

.
.

.
.

.
.

G

T
II
_E

1b
.

.
C

.
.

C
.

.
.

G
G

.
.

.
.

.
.

T
C

.
.

.
.

.
.

G

T
II
_E

2
.

.
C

C
.

.
.

.
.

.
.

.
.

.
.

.
.

T
.

.
.

.
.

.
.

G

T
II
_F

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
T

.
.

.
.

.
.

.
G

T
II
_G

1
.

G
.

.
.

.
.

.
.

.
.

.
G

.
.

.
.

.
.

.
.

.
A

.
.

.

T
II
_G

2a
.

G
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

T
.

.
.

.
A

.
.

G

T
II
_G

2b
.

G
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

T
.

.
.

.
A

.
.

G

T
II
_G

3
.

G
.

.
T

.
.

.
.

.
.

.
.

.
.

.
.

T
.

.
.

.
A

.
.

G

T
II
_G

4
.

G
.

.
.

.
.

.
.

.
.

.
G

.
.

.
.

T
.

.
.

.
A

.
.

G

V. Rojo et al.

Author's personal copy

220



between HI repeats involving I. cyreni are always con-
siderably higher (from 2.0 % between I. cyreni and
I. aranica to 3.40 % between I. cyreni and I. horvathi).

Sequence variability within TaqI satDNA

From the alignment of TaqI sequences, we identified a
total of 50 diagnostic positions, which defined two main
subfamilies—namely TI and TII—and 37 sequence
groups, whose abundances ranged from 1.3 to 8.5 %
(2–13 representatives) of the examined sequences
(Table 2b and Supplementary Fig. 1b).

In general, the species of the Iberian clade were
characterized by the presence of TaqI repeats
belonging only to subfamily TI (Fig. 1b), with a
substantial proportion of private sequence groups
(four groups, comprising 15 out of 42 sequences).

Conversely, subfamily TII is essentially characteristic of
the subgenusPyrenesaura, although it has been residually
observed also in I. horvathi. This subfamily appears to be
the most abundant variant in the genomes of I. aranica
and, above all, I. aurelioi, which show both species-
specific and shared sequence groups. The sampled loci
from I. bonnali and I. horvathi contain mostly T1 repeats.
However, the clustering pattern of TI repeats differs
markedly between the two species: while all the
monomers retrieved from I. bonnali were grouped
together with monomers from other species,
I. horvathi shows the highest proportion of
species-specific repeats (25 out of 33), allocated
to six private sequence groups.

As expected from the distribution of subfamilies
TI and TII in the genomes of the Iberolacerta
species, intraspecific nucleotide diversity values

Fig. 1 Distribution and abundance of HindIII (a) and TaqI (b)
subfamilies in Iberolacerta coupled to a Bayesian tree obtained
from two mitochondrial loci (Cyt b, cytochrome b; CR, control
region) (adapted fromArribas et al. 2014).Node bars indicate 95%

credibility intervals (regions of highest posterior density) for the
corresponding divergence time (in million years). Numbers in the
table indicate the number of repeats of each subfamily retrieved
from each species. Colors identify different subfamilies
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are higher for I. horvathi and the Pyrenean species, which
harbor both types of TaqI repeats in their genomes
(Table 1). When each subfamily is analyzed separately,

π values within subfamily TI are two- to threefold greater
in these species than in the species of the Iberian clade
(from 4.06 % in I. cyreni to 11.84 % in I. horvathi). High

Fig. 2 Three-dimensional representation of a factorial correspondence analysis based on monomeric sequences of HindIII (a) and TaqI (b)
satDNAs
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π values were also obtained for subfamily TII in those
species with a large number of monomers examined
(9.08 % in I. aurelioi and 9.60 % in I. aranica).

The factorial analysis of TaqI monomers identified a
main axis of variation (axis 1 at Fig. 2b, explaining
48.30 % of the observed variation), corresponding to
the separation between three groups of repeats: (1)
subfamily TII (i.e., essentially Pyrenesaura); (2) a subset
of subfamily TI, including all the monomers of Iberian
species and a few monomers of I. bonnali; and (3) a
subset of subfamily TI, made up of monomers from
I. horvathi, I. aranica, and I. bonnali. Axis 2 in the
FCA, which accounts for 25.70 % of the total variation,
separates a fourth group of repeats, comprising the
remaining TI monomers of I. horvathi. Net genetic
distances between repeats from the different species
(Table 3b) give additional support to the FCA results.
Leaving aside the comparisons involving the single
monomer of TI in I. aurelioi, larger distances between
T1 repeats correspond to pairs of the Iberian species
with both I. aranica (4.70–5.10 %) and, above all,

I. horvathi (6.10–7.0 %). As for the TII repeats, all the
pairwise comparisons, involving the subgenus
Pyrenesaura and I. horvathi, produce rather low values
(0.0–1.30 %).

Organization of consecutive monomeric units

The cloning and sequencing of multimeric products
allowed us to characterize the organization of consecu-
tivemonomeric repeats. In both satDNA families, and in
all the species analyzed, we observed that adjacent
monomers in a satellite array usually belong to different
sequence groups and even to different subfamilies (for a
list of all HindIII and TaqI composite arrays sampled in
the Iberolacerta species, see Supplementary Tables 2
and 3, respectively).

Phylogenetic analysis

The statistical parsimony network obtained for HindIII
satDNA showed a high degree of reticulation among the

Table 3 Interspecific and inter-subfamily net genetic distances for
HindIII (a) and TaqI (b) repeats. Standard error estimates are
shown above the diagonal. Color codes represent the different

types of HindIII and TaqI subfamilies. Asterisks in b indicate those
values obtained in comparisons involving IAU_TI, represented by
only one sequence

IGA
HI

IMR
HI

IAU
HI

IHO
HI

IMO
HI

IBN
HI

IAR
HI

ICY
HI

IGA
HII

IBN
HII

IAU
HII

IAR
HII

IMO
HII

ICY
HIII

IBN
HIII

IGA_HI 0.001 0.003 0.001 0.000 0.002 0.003 0.011 0.017 0.016 0.016 0.017 0.016 0.023 0.026
IMR_HI 0.001 0.004 0.001 0.000 0.003 0.004 0.013 0.018 0.017 0.017 0.017 0.017 0.024 0.026
IAU_HI 0.006 0.008 0.005 0.003 0.000 0.001 0.011 0.015 0.013 0.013 0.014 0.012 0.023 0.025
IHO_HI 0.001 0.001 0.009 0.000 0.003 0.005 0.015 0.019 0.018 0.017 0.018 0.018 0.026 0.028
IMO_HI 0.000 0.001 0.005 0.000 0.002 0.003 0.012 0.017 0.016 0.016 0.017 0.016 0.024 0.026
IBN_HI 0.003 0.005 0.000 0.006 0.003 0.001 0.010 0.016 0.014 0.013 0.015 0.012 0.022 0.025
IAR_HI 0.005 0.006 0.001 0.008 0.004 0.001 0.010 0.016 0.014 0.013 0.015 0.013 0.021 0.024
ICY_HI 0.026 0.028 0.023 0.034 0.029 0.022 0.020 0.022 0.018 0.019 0.021 0.018 0.016 0.020
IGA_HII 0.047 0.048 0.039 0.050 0.046 0.042 0.041 0.065 0.001 0.004 0.001 0.007 0.032 0.030
IBN_HII 0.041 0.044 0.031 0.047 0.042 0.034 0.032 0.051 0.002 0.000 0.001 0.002 0.029 0.030
IAU_HII 0.038 0.042 0.026 0.044 0.038 0.029 0.028 0.051 0.007 0.000 0.002 0.001 0.029 0.030
IAR_HII 0.044 0.046 0.033 0.048 0.043 0.036 0.035 0.061 0.001 0.000 0.002 0.003 0.031 0.031
IMO_HII 0.039 0.043 0.024 0.045 0.038 0.027 0.026 0.049 0.012 0.004 0.000 0.010 0.028 0.030
ICY_HIII 0.077 0.080 0.074 0.086 0.080 0.073 0.068 0.043 0.115 0.102 0.101 0.112 0.100 0.005
IBN_HIII 0.088 0.090 0.086 0.097 0.091 0.085 0.080 0.063 0.104 0.103 0.105 0.106 0.108 0.011

a

IHO_TI IBN_TI IAR_TI IAU_TI IMR_TI ICY_TI IGA_TI IMO_TI IAR_TII IAU_TII IBN_TII IHO_TII
IHO_TI 0.009 0.022 0.025 0.018 0.018 0.025 0.019 0.022 0.019 0.021 0.029
IBN_TI 0.033 0.004 0.027 0.006 0.006 0.004 0.008 0.020 0.021 0.015 0.019
IAR_TI 0.024 0.011 0.024 0.015 0.015 0.015 0.015 0.017 0.017 0.012 0.017
IAU_TI 0.100* 0.107* 0.084* 0.033 0.033 0.032 0.032 0.028 0.030 0.026 0.031
IMR_TI 0.066 0.014 0.050 0.152* 0.002 0.002 0.002 0.026 0.027 0.023 0.024
ICY_TI 0.070 0.016 0.051 0.154* 0.004 0.003 0.004 0.026 0.027 0.023 0.024
IGA_TI 0.064 0.014 0.049 0.147* 0.005 0.008 0.005 0.025 0.027 0.023 0.024
IMO_TI 0.061 0.016 0.047 0.146* 0.003 0.007 0.007 0.026 0.028 0.024 0.024
IAR_TII 0.062 0.075 0.056 0.122* 0.112 0.116 0.110 0.115 0.003 0.004 0.006
IAU_TII 0.066 0.075 0.056 0.128* 0.117 0.121 0.113 0.119 0.007 0.005 0.005
IBN_TII 0.044 0.054 0.036 0.104* 0.095 0.097 0.091 0.097 0.001 0.000 0.004
IHO_TII 0.055 0.057 0.046 0.120* 0.089 0.090 0.084 0.089 0.013 0.008 0.002

b
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members of subfamily HI (Fig. 3a). This pattern
suggests that rearrangements due to recombination
events are an important force generating new monomers
in this subfamily —the most widespread among
Iberolacerta species—, which occupies the central
position of the parsimony network. Two sequence
groups within this subfamily, HI_K and HI_M,
branched into two separate lineages, corresponding to
subfamilies HII and HIII, respectively. In contrast to
subfamily HI, no evidence for recombination events
has been found within subfamilies HII and HIII.

In the network of TaqI satDNA, all sequence groups
converge on a group belonging to subfamily T1 (T1_ FI,
Fig. 3b). The network shows a major separation of four
clusters, connected to group TI_F1 by a few mutational
steps. Three of them (T1_F2, T1_C2, and T1_G1,
together with their related variants) include sequences
only found in I. horvathi and in the subgenus

Pyrenesaura. All sequence groups belonging to
subfamily TII occupy a peripheral position within
cluster G1. The extensive diversification within
subfamily TII has been promoted, in some cases, by
recombination events that created new monomer variants
(e.g., TII_E1b or TII_G2a). Within the fourth cluster, the
prolific lineage TI_L3 includes closely related sequence
groups (separated by just one or two nucleotide changes),
specific to the Iberian clade.

Chromosomal location of HindIII and TaqI satDNA
families

FISH with HindIII satDNA probe on metaphase chro-
mosomes of I. monticola and I. galani revealed that this
repetitive element is present at centromeres of all the 36
chromosomes of the diploid complement (Fig. 4;
Giovannotti et al. 2014). FISH on female metaphases

Fig. 3 Statistical parsimony network constructed from the consensus sequences of the different sequence groups of aHindIII satDNA and b
TaqI satDNA
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of I. bonnali, carried out in this work, showed hybridi-
zation signals in the centromeric regions of all the 23
chromosomes of the karyotype, although with variable
signal strength in different chromosome pairs (Fig. 4).
Moreover, the overall intensity of HindIII signals in
I. bonnali was noticeably lower than in I. monticola
and I. galani. No hybridization signals were observed
in the chromosomes of I. horvathi.

FISH with TaqI satDNA probe in I. monticola
and I. galani produced bright signals in interstitial
position in a subset of 20 and 18 chromosomes,
respectively (Fig. 5). In I. bonnali, similarly intense
signals were detected interstitially on both arms of
10 meta-/submetacentric chromosomes. In some meta-
phases, an additional faint signal could be observed in a
medium-sized chromosome pair (Fig. 5). In I. horvathi,
strong hybridization signals were also observed in
interstitial position but just in six chromosomes.
However, after increased exposure times, 10 additional
chromosomes appeared weakly labeled (Fig. 5).

Discussion

The turnover rate of a satDNA family is a complex
feature that depends on many parameters, such as inter-
chromosomal and intrachromosomal recombination
rates, copy number and long-range organization of
repeat units, genome location and distribution, putative
functional interactions, reproductive mode, and popula-
tion factors (Strachan et al. 1985; Dover 2002; Luchetti
et al. 2003; Robles et al. 2004; Meštrović et al. 2006;
Kuhn et al. 2008; Navajas-Pérez et al. 2009; Giovannotti
et al. 2013). In consequence, sequence dynamics of
satDNA families may differ not only among families
but also, for a given family, among genomic regions
(Kuhn et al. 2011), populations (Wei et al. 2014),
species, or higher taxonomic groups (e.g., Macas et al.
2006; Kuhn et al. 2008; Martinsen et al. 2009; Plohl
et al. 2010).

In agreement with Giovannotti et al. (2014), the
results of the present work show that overall variability

Fig. 4 Hybridization pattern of the HindIII probe in the karyotypes of Iberolacerta monticola, I. galani and I. bonnali. Scale bar=10 μm
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Fig. 5 Hybridization pattern of the TaqI probe in the karyotypes of Iberolacerta monticola, I. galani, I. bonnali, and I. horvathi. FISH
signals on I. horvathi chromosomes are shown at standard (a) and increased (b) exposure times. Scale bar=10 μm
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of TaqI repeats in the whole genus Iberolacerta is on
average three times higher than the variability of HindIII
repeats, which suggests a faster homogenization/
fixation rate for the latter satDNA family. However,
the detailed characterization of both satDNA families
in all eight Iberolacerta species reveals that their evolu-
tionary patterns are more complex than previously
anticipated. The presence of HindIII_HI in all the species,
and its central position in the phylogenetic network,
suggests that this is the most ancestral variant of HindIII
satDNA, from which subfamilies HII and HIII were
derived. Interestingly, with the exception of I. cyreni,
no intraspecific homogenization for any particular
subfamily was detected in our study, and most different
sequence groups of subfamilies HI and HII are wide-
spread and shared by even distantly related species.
Indeed, interspecific genetic distances within each
subfamily are substantially lower than intraspecific
genetic distances between repeats belonging to different
subfamilies. On the contrary, I. cyreni shows a high
proportion of private sequence groups belonging to sub-
family HIII, and a well-differentiated subset of HI
repeats, which explains the evidence of concerted
evolution found for this species in our previous study.
However, the finding of HIII repeats also in I. bonnali
indicates that this subfamily is not exclusive of I. cyreni,
but was already present in the common ancestral library
of HindIII variants. Combining these data with the
results of FISH experiments, the most parsimonious
interpretation of HindIII satDNA evolution is that the
diversification of HindIII repeats—which generated most
of the extant variants—took place in the common
ancestor of Iberolacerta, before species radiation, i.e.,
from 11.6 to 15.6 Mya (Arribas et al. 2014). In the
ancestral species, HindIII satDNA might have been
widely distributed in the centromeres of all chromosome
pairs, with a subsequent decrease in copy number in
I. horvathi and, at least, in the Pyrenean I. bonnali. In
the latter species, and maybe also in the other two
Pyrenean taxa, the reduced amounts of HindIII satDNA
might obey to the possible involvement of this centro-
meric element in the Robertsonian fusions that originated
the biarmed chromosomes characteristic of Pyrenesaura
from the ancestral acrocentric karyotype, as has been
suggested for other centromeric repeats in marsupials
(Bulazel et al. 2007). Alternatively, HindIII could repre-
sent a minor satDNA family in the centromeres of the
ancestral species, which was differentially amplified in
the Iberian clade. In either case, the turnover of HindIII

repeats in the different lineages mainly involved the same
pool of Bold^ repeat variants. Long-term conservation of
ancestral repeats could be a consequence of selective
constraints imposed on functional motifs or structural
features of satellite monomers (see, for example,
Meštrović et al. 2006; Plohl et al. 2012), involved in
any of the roles ascribed to satDNAs (reviewed in
Ugarković 2009). Thus, even if we did not find any
evidence of function in HindIII satDNA, selection may
have favored the maintenance of some repeat variants
and/or limited the diversification of this repetitive
element. Nevertheless, the loss of HindIII repeats in
I. horvathi and I. bonnali (or, alternatively, the amplifica-
tion in the Iberian species) suggests that even if functional,
a satellite familymay be replaced by another in a relatively
short evolutionary time.

Actually, and in contrast to the highly conserved
function of the centromeres, the rapid evolution and
extensive changes in copy number of satDNAs is a
general characteristic of centromeric regions (Henikoff
et al. 2001). The detection of recombinant sequences
within subfamily HI suggests that mechanisms such as
unequal crossovers between sister chromatids and gene
conversion may have been an important source of new
sequence variants in HindIII satDNA (e.g. Smith 1976;
Talbert and Henikoff 2010). Moreover, unequal cross-
over occurring between highly homogeneous arrays can
induce copy number alterations of satDNA repeats, such
as those observed in the Iberolacerta species (Stephan
1986). This fast evolution of centromeric satDNAs can
be linked to reproductive isolation and speciation
(Bachmann et al. 1989; Bachmann and Sperlich 1993).
For example, divergence of centromeric satDNA in
Drosophila species can inhibit chromosome segregation
in hybrids and thus directly cause hybrid incompatibilies
and postzygotic isolation (Ferree and Barbash 2009).
Likewise, the high copy number polymorphisms and
rapid shifts in centromere sequence composition could
have contributed and even triggered species radiation
within Iberolacerta.

The TaqI satDNA family appears to have a very
different evolutionary history from the HindIII family,
and to evolve much faster in the lineage that leads to
I. horvathi. According to the parsimony network,
TaqI_TI, the most widespread subfamily among the
analyzed species, would also be the most ancestral
variant, from which subfamily TII was derived. More-
over, the phylogenetic distribution of the different
sequence sets suggests that both subfamilies were

Evolution of two satellite DNAs in Iberolacerta

Author's personal copy

227



present in the common ancestor of Iberolacerta. Subse-
quently, subfamily TII spread in the Pyrenean species,
whereas it was progressively lost in I. horvathi and
maybe even completely removed from the genomes of
the Iberian species. Altogether, TI repeats retrieved from
I. horvathi show a general pattern of concerted evolu-
tion, with high interspecific distance values in all
pairwise comparisons and a large subset of species-
specific sequence groups. The allocation of these private
groups (e.g., TI_A2 or TI_C1) in terminal clades of the
statistical parsimony network indicates that they
probably arose after the early separation of I. horvathi
from the remaining species, about 11.5 Mya (9.6–13.7)
(Arribas et al. 2014). The evolution of TaqI satDNA in
I. horvathi was probably accompanied by a reduction in
the abundance and chromosomal distribution, as
inferred from the results of FISH experiments. TaqI
satDNA also seems to evolve in concert in the Iberian
clade but with a distinct pattern from that found in
I. horvathi. In this case, the profile of TI repeats
and the low levels of nucleotide diversity indicate
that concerted evolution in the Iberian clade
involved the preferential homogenization of a
reduced subset of TaqI variants, all of which
evolved from a single sequence lineage, TI_L3.
After cladogenesis, however, the rate at which TI
repeats evolved within the Iberian clade is presum-
ably low, since TaqI sequences are poorly differ-
entiated between the four taxa and we found
almost no species-specific sequence sets.

In contrast with I. horvathi and the Iberian species,
the turnover of TaqI satDNA seems to be remarkably
slow in the Pyrenean I. bonnali. TaqI repeats from this
species belong mainly to Bold^ sequence sets of
subfamily TI, and lack species-specific diagnostic
positions, which indicates that most of the variability
found in I. bonnali obeys to synapomorphisms, and that
TaqI repeats have been evolving with a low rate of
sequence change after speciation. Conversely, the evo-
lution of TaqI satDNA in the other two Pyrenean
species, I. aranica and I. aurelioi, is characterized by
the amplification of subfamily TII. Phylogenetic studies
suggest that the three species of the Pyrenean clade
originated in rapid succession, though I. bonnali proba-
bly split first, roughly 3.8 Mya (2.7–4.9) (Arribas et al.
2006, 2014). According to this phylogenetic reconstruc-
tion, the amplification of subfamily TII in the genomes
of I. aranica and I. aurelioimay have occurred in a short
time, after the separation of I bonnali and before the

divergence of both species, ca. 3.3 Mya (2.3–4.3). A
rapid expansion of subfamily TII agrees well with the
high levels of intraspecific nucleotide diversity and
interspecific sequence conservation observed for this
subfamily in both species.

The different turnover rates of TaqI repeats among
the Pyrenean species, I. horvathi and the Iberian species,
could be related to differences in their karyotypes. It is
possible that interchromosomal exchange and homoge-
nization between the asymmetric meta-/submetacentric
chromosomes of the Pyrenean species is more
limited than in the species with all acrocentric
chromosomes, more homogeneous in shape and
size. Similar considerations have been proposed
to explain the lower evolutionary rate of satDNAs
in sturgeons as compared to sparids (de la Herrán
et al. 2001). Limited interchromosomal exchange
would lead to a progressive compartmentalization
of satellite repeats, followed by a reduction in
their interactions and, eventually, by a lack of
homogenization of different sequence variants.
However, this hypothesis is at least partially
contradicted by our analysis of consecutive mono-
meric units, which revealed that, in both HindIII
and TaqI satDNA families, adjacent repeats are not
necessarily more similar than are repeats selected
at random and that members of different sequence
groups or even subfamilies can be interspersed in
the same array.

In fact, this pattern of composite repeats may be a key
factor explaining the disparate turnover rates of each
satDNA family in different species. In eukaryotes,
homologous recombination within or between chromo-
somes can be inhibited by only one mutation per 200 bp
(Nijman and Lenstra 2001 and references therein).
Likewise, mutations in new monomer variants
would inhibit the interactions of repeat units, leading
to sequence diversification, divergent evolution, and the
formation of satDNA subfamilies. Accordingly, our
estimates of intraspecific genetic distances between
repeats belonging to different subfamilies suggest that
each subfamily within HindIII and TaqI satDNAs is
evolving independently. In this context, the
intermixing between subfamilies HI and HII within
HindIII arrays in most of the species analyzed, and
between TaqI subfamilies TI and TII in the Pyrenean
taxa, would strongly reduce recombination and
homogenization within each subfamily, resulting in
the pattern of non-concerted evolution observed
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in our study. Conversely, the amplification of sub-
family HIII in I. cyreni, and the preponderance of
subfamily TI in I. horvathi and the Iberian species,
allows a more efficient homogenization of HindIII
and TaqI repeats, respectively, which translates
into the overall patterns of concerted evolution
observed for these satDNA families in the species
mentioned above.

Taken together, our results on the dynamics of
HindIII and TaqI satDNAs in Iberolacerta are
congruent with proposed models of satDNA evo-
lution and life history, intended to explain the
considerable fluctuations in copy number and
variability of satDNAs shared by related species
(Nijman and Lenstra 2001; Plohl et al. 2010).
They also support the idea that the Blibrary
model^ may be extended to monomer variants
of the same satDNA family, which were already
present in a common ancestor and are currently
distributed in related species in variant copy num-
bers (Cesari et al . 2003). As observed in
Iberolacerta, this particular evolutionary pattern
may result in species-specific profiles of satDNAs
which do not reflect the phylogenetic relation-
ships among taxa.

In conclusion, an in-depth analysis of intragenomic
variability of HindIII and TaqI satDNAs in Iberolacerta
revealed two disparate evolutionary histories which,
nevertheless, showed some common traits: (i) each
satDNA family is made up of a library of monomer
variants or subfamilies shared by related species; (ii)
species-specific profiles of satellite repeats are shaped
by expansions and/or contractions of different variants
from the library; (iii) different turnover rates, even
among closely related species, result in great differences
in overall sequence homogeneity and in concerted or
non-concerted evolution patterns. Contrasting turn-
over rates are possibly related to genomic
constraints such as karyotype architecture and the
interspersed organization of diverging repeat vari-
ants in satellite arrays and maybe also to functional
interactions. On the whole, these satDNA families
constitute highly dynamic systems, which may
have a critical role on the evolution of genome
and species. Further studies aimed at investigating
the genome-wide variability and organization of
reptilian satDNAs may not only be useful to test
current hypothesis and identify mechanisms
influencing the evolution of this genomic

component but also to improve its application as
a molecular marker in phylogenetic studies.
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