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Abstract: Ectothermic animals living at high elevation often face interacting challenges, including
temperature extremes, intense radiation, and hypoxia. While high-elevation specialists have devel-
oped strategies to withstand these constraints, the factors preventing downslope migration are not
always well understood. As mean temperatures continue to rise and climate patterns become more
extreme, such translocation may be a viable conservation strategy for some populations or species,
yet the effects of novel conditions, such as relative hyperoxia, have not been well characterised. Our
study examines the effect of downslope translocation on ectothermic thermal physiology and perfor-
mance in Pyrenean rock lizards (Iberolacerta bonnali) from high elevation (2254 m above sea level).
Specifically, we tested whether models of organismal performance developed from low-elevation
species facing oxygen restriction (e.g., hierarchical mechanisms of thermal limitation hypothesis) can
be applied to the opposite scenario, when high-elevation organisms face hyperoxia. Lizards were
split into two treatment groups: one group was maintained at a high elevation (2877 m ASL) and the
other group was transplanted to low elevation (432 m ASL). In support of hyperoxia representing
a constraint, we found that lizards transplanted to the novel oxygen environment of low elevation
exhibited decreased thermal preferences and that the thermal performance curve for sprint speed
shifted, resulting in lower performance at high body temperatures. While the effects of hypoxia
on thermal physiology are well-explored, few studies have examined the effects of hyperoxia in an
ecological context. Our study suggests that high-elevation specialists may be hindered in such novel
oxygen environments and thus constrained in their capacity for downslope migration.

Keywords: high elevation; hyperoxia; sprint performance; thermal performance curve; thermal pref-
erence

1. Introduction

Mountains cover approximately 30% of the world’s land surface [1]. These biodiversity
hotspots [2] harbour virtually all life forms (including diversity of bacteria [3,4], insects [5,6],
arachnids [7], gastropods [8,9], fish [10,11], amphibians [12,13], mammals [14,15], birds [16],
and squamate reptiles [17,18]). Mountain ecological landscapes are characterised by alti-
tudinal zonation [19], where organisms tend to be adapted to a relatively narrow range
of environmental conditions including colder temperature regimes (mean and extremes),
strong UV irradiance, and lower atmospheric pressure, thus reduced oxygen availability as
altitude increases. Although examples abound where geographically widespread species
usually constrained to low elevation areas have successfully established along parts of
the elevational gradient [20–23], plants and animals found in high altitudinal zones tend
to become isolated since the conditions above and below a particular zone will be inhos-
pitable and thus restrict their movements or dispersal. In extreme examples, such isolated
ecological systems have been coined sky or continental islands [16,24,25].
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Physiological adaptations to high-elevation life have attracted considerable scien-
tific attention, including in humans, domesticated animals, and wild animal popula-
tions [26–28], notably in relation to colder temperature regimes, UV irradiance, and lower
oxygen availability. However, it is less clear how such adaptations may prevent or hinder
population movement, especially toward lower elevations. In other words, are popu-
lations found at high elevation effectively restricted to this elevation, and if so, why?
Several non-exclusive hypotheses exist. Most obviously, environmental conditions below
the current elevation may exceed the organisms’ tolerance (i.e., beyond its fundamental
niche), being too hot or too dry for instance [29–31]. Alternatively, lower-elevation niches
may be exploited by a direct competitor, harbour a predator, or may lack a suitable food
source [32–34].

One such example comes from an endemic trio of lizard species in the genus Iberolac-
erta, namely, I. aranica, I. aurelioi, and I. bonnali. These three species exhibit non-overlapping
distributions between 1500 and 3100 m above sea level (ASL) in the Pyrénées mountains
of southwestern Europe (France, Andorra, and Spain). They occur as a constellation of
small populations, with high degrees of genetic isolation amongst populations of the three
species [35,36] presumably due to very low dispersal rates amongst mountain peaks [37].
In the case of Iberolacerta, it was suggested that their restricted distribution resulted either
(1) from their cold-adapted thermal physiology (i.e., low tolerance for high temperature,
resulting in a reduction in their activity budgets by excess of heat [38–42]) or (2) from
competitive exclusion from wall lizards (Podarcis spp. [43]). In support of the latter, some
studies suggest that competition with Podarcis might affect the presence of high-elevation
specialist Iberolacerta spp. through antagonistic interactions and competition for access to
preferred thermal habitat ([44,45], but see [46]).

Recent studies [47,48] suggest that Podarcis may be suited to higher-elevation colonisa-
tion beyond its current range due to embryonic developmental resilience to lowered oxygen
availability when transplanted to high elevation (≈3000 m ASL), well above its maximum
recorded elevation (i.e., 2200 m ASL [35,49]). Moreover, Podarcis is locally observed to
expand its range upslope at a steady but rapid pace in the Pyrénées [49], suggesting that
fast colonisation might occur in the coming decades. This will inevitably bring more
Podarcis into contact with Iberolacerta and foster potential competition for territories, nesting
sites, and food, as well as potentially exposing Iberolacerta to novel diseases and parasites.
Current climate change will only facilitate this process [29,50,51]: high-altitude areas are
warming faster than the global average [52–54], and Podarcis are a thermophilic species
successful at establishing in new environments [43,55–58].

With this study, we tested an additional, non-exclusive hypothesis of the mechanism
limiting Iberolacerta to high elevation: we propose that Iberolacerta species have adapted
to high elevation hypoxia to a point where sea-level oxygen levels (hyperoxia, from Ibero-
lacerta’s perspective) may hinder organismal function. As an analogy, the metabolic cold
adaptation hypothesis (MCA) predicts that ectotherms from colder environments (higher
latitudes or elevations) will have elevated metabolic rates compared to those from warmer
climates at a given temperature [59]. Increased metabolic rates are predicted to be adaptive
by allowing accelerated physiological processes in environments that feature shorter pe-
riods of optimal conditions [60,61]. On the other hand, such adaptations become rapidly
detrimental (i.e., metabolically very costly) if environment temperature increases (e.g.,
via climate change or dispersal). In the same manner, organisms adapted to maintaining
organismal function in low-oxygen conditions may suffer under conditions of increased
oxygen availability. For example, this may disrupt oxidative phosphorylation pathways
that can either reduce the efficiency of aerobic metabolism or result in the production of
potentially harmful byproducts [62–64].

To test this hypothesis, we studied the effect of translocation to low elevation on ec-
tothermic thermal physiology and performance. Shifts in elevation most notably affect the
total partial pressure exhibited by the atmosphere, which will reduce oxygen availability at
high elevations and increase availability at low elevations. Utilising Pyrenean rock lizards
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(Iberolacerta bonnali), we measured traits known to have important consequences for both
fitness and thermally-dependent physiological processes: sprint speed and preferred body
temperature. If high-elevation specialists are able to process increased oxygen when avail-
able, we predicted both sprint speed and preferred body temperatures will increase, in the
opposite direction from what has been observed in low-elevation organisms brought into
hypoxia [65–67]. In contrast, under our novel proposal that hyperoxia limits high-elevation
species from moving downslope, we predicted performance decrements and reduced
preferred body temperatures after transplanting lizards to low elevation. Thus, we sought
to understand how organisms are adapted to their specific oxygen environment and their
potential behavioural and physiological responses to novel environments. Quantifying
these responses is essential in addressing the question of whether abiotic factors, such as
oxygen availability, represent absolute constraints on organismal performance or whether
organisms are specifically adapted to the resources in their environment and any deviance
from these levels—either increase or decrease—can restrict physiological processes and
performance.

2. Materials and Methods
2.1. Study Species

The Pyrenean rock lizard (Iberolacerta bonnali Lantz, 1927; Figure 1) is a diurnal,
heliothermic species endemic to the alpine and subalpine environments of the Pyrénées
Mountains [35] and can be found at elevations between 1550 and 3062 m ASL [68]. Its
annual period of activity is very short due to cold temperatures and the presence of snow
most of the year [35,68,69]. This restricts their reproductive cycle to one clutch per year
with an average of three eggs [70]. Being a highly endemic patrimonial species with a very
restricted range, it is listed on the IUCN red list of threatened reptile species in Europe [71].

Figure 1. Two adult Iberolacerta bonnali basking in their natural environment. Photograph by Fabien Aubret.

2.2. Experimental Design

Since female reproductive status cannot always be ascertained (i.e., early vitellogene-
sis) and because carrying eggs may affect performance and thermoregulatory patterns in
squamates [72–74], the study was carried out with male lizards only. We captured 40 male
lizards around the Lac d’Oncet at 2254 m ASL (Department of Hautes-Pyrénées, France)
between 2 and 7 July 2020 using the lasso method [75,76] during peak activity hours (09 h
30–15 h 30). Immediately after capture (within 10 s), body temperature was recorded
with an infrared thermometer from a 30 cm distance (infrared thermometer Trotec BP21,
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Marchtrenk, Austria, distance:measurement spot ratio 12:1). On the day of capture, we
measured the body mass with a precision scale to the nearest 0.01 g (range: 1.24–4.28;
mean ± s.d.: 2.64 ± 0.83 g) and the snout vent length (SVL) with a digital caliper to the
nearest 0.1 mm (range: 38.9–56.0; mean± s.d.: 48.19± 5.22 mm). Lizards were individually
marked using a cautery pen [77]. For logistical reasons, the first 20 lizards captured were
transported to the Station d’Ecologie Théorique et Expérimentale du CNRS à Moulis as
the low-elevation treatment (42◦57′26.8′ ′ N, 1◦ 05′08.3′ ′ E; 436 m ASL; PO2 ≈ 20.1 kPa)
and the following 20 others to the Observatoire du Pic de Midi de Bigorre (42◦56′11.09′ ′ N,
0◦8′32.9′ ′ E; 2877 m ASL; PO2 ≈ 15.3 kPa). These differences in elevation result in about a
25% reduction in oxygen availability at the high elevation Pic du Midi lab compared with
the low elevation lab [78]. Treatment groups did not differ in SVL (t37.6 = 0.035, p = 0.97) or
mass (t37.9 = 0.071, p = 0.94) at the beginning of the experiment or in mass at the end of the
experiment (t36.9 = 1.51, p = 0.14).

Lizards were maintained under identical conditions in both labs so that the primary
difference in environments was total atmospheric pressure and thus oxygen availability.
While such experimental designs are not able to completely isolate the effects of reduction
in oxygen availability from changes in total atmospheric pressure, they are essential com-
plements to experiments that manipulate oxygen concentration in a controlled laboratory
setting [79]. Lizards were housed in groups of 2–4 in plastic enclosures (38 × 26 × 23 cm)
containing a thin layer of substrate, a water container, and two plastic hides also used as
thermoregulation platforms (15 × 5 × 3.5 cm). Every second day, lizards were fed with
mealworms (Tenebrio sp. larvae) and white maggots (Calliphora vomitoria), and water was
provided ad libitum. The cages were misted once a day. A UV lamp provided light for 11 h
per day, and the enclosures were heated with incandescent heat lamps (42 W) for 6 h per
day at 1 h intervals, providing a gradient of 20 to 36 ◦C. Animals stayed in captivity for 2
to 3 days before the start of the testing schedule (see below).

2.3. Thermal Preferences

We quantified lizard thermal preferences for both treatment groups using standard
procedures in a thermal gradient. After two hours acclimating to ambient temperatures
(20 ◦C) in their home cages, four lizards were placed in individual lanes of a thermal
preference arena (each lane 90 × 15 cm). On one side of this arena, we suspended four
ceramic lamps (150 W) to create a thermal gradient ranging from 20 to 60 ◦C. The animals
were left undisturbed for a one-hour acclimation period. Using two thermal cameras
(model C3, Flir Systems, Wilsonville, OR, USA) placed on tripods above the arena at a
distance of approximately 1 m, we captured images of the lizards on the gradient every
5 min for 3 h. Temperature data were extracted from the thermographs with Flir Tools (v.6.4,
Flir Systems). We extracted data from the image that had the best angle or clearest image of
the lizard at a given timepoint. We used the area box tool to select pixels in the centre of each
lizard dorsum. We used an emissivity value of 0.97, appropriate for reptile skin [80,81], and
accounted for ambient temperature and the distance between camera and animal. Using
the 36 values for each individual, we quantified the preferred temperature as the mean of
the middle 50% (mean of interquartile range [82]). Data for one individual were excluded
from analysis because this lizard wedged himself partially under the partition and did not
move for the entire trial period.

2.4. Performance Measurements

Our goal was to create thermal performance curves for sprint speed for lizards in
both treatment groups. We measured sprint performance at five temperatures, spanning
the active range for this species (15, 22, 29, 32, and 35 ◦C [68,83]). We tested lizards at a
maximum of two temperatures per day, with 6–16 h rest between trials. The experiment
was conducted over three consecutive days. Before sprinting, we acclimated lizards for one
hour in thermostatically controlled incubators (Aqualytic, Germany) at the test temperature.
Room temperature was thermostatically controlled to 20 ◦C. We then sprinted lizards on a
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1-m level racetrack lined with artificial turf, recording trials with a video camera (25 fps,
Sony Model HDR-XR160E, Sony Corporation, Tokyo, Japan) placed on a tripod directly
above the track. Lizards were prompted to sprint from 2 to 6 lengths of the track (i.e.,
until the visually fastest running speed was obtained). Data were extracted from videos
using Tracker software [84]. For each length performed by a lizard, we calculated the
maximum speed as the longest distance a lizard traversed in a time step of 0.2 s. We
sprinted lizards from both treatments in the same order of test temperatures, from coolest
to warmest, so that lizards in both groups would experience the exact same treatment order
and to avoid any potentially detrimental effects of incubation at the highest temperatures,
especially in the high-elevation treatment where animals may be more sensitive to high
temperatures [65]. To account for the potential effects of acclimation on lizard performance,
after the trials at the highest temperature, we again sprinted all lizards at 15 ◦C to test
for changes in performance over time in captivity and to estimate repeatability of sprint
performance over the duration of the experiment.

2.5. Ethics Statement

Field and lab protocols were conducted under permit from the Direction régionale
de l’environnement, de l’aménagement et du logement (DREAL) Midi-Pyrénées (Arrêté
Préfectoral No: 2017-s-02 du 30 mars 2017), under current ethical committee approval
(APAFIS DAP#16359), and in accordance with Directive 2010/63/EU on protection of
animals used for Scientific Purposes. Animals were returned to the site of capture after
experiments.

2.6. Statistical Methods

To test for differences between treatment groups in thermal preference, we first used
Levene’s test to assess differences in variance and a t-test, assuming unequal variances,
to test for differences in the mean, implemented in the programming language R [85].
We utilised linear mixed models to assess the relative influence of elevation treatment
(low/high), temperature (treated as a categorical effect), body size (SVL), and the interaction
of treatment and temperature on sprint performance. We log10-transformed sprint speed
before analysis to meet the assumption of normal distribution of residuals and included
a random intercept for individual to account for repeated measures on the same animal.
We used the package emmeans for post hoc comparisons of estimated marginal means,
corrected for multiple comparisons with the Tukey method, in order to compare sprint
speed between treatment groups at each temperature [86,87]. We implemented models
with the lme4 package [88] in R. We confirmed normal distribution of residuals with a
Shapiro–Wilk test and determined the relative importance of fixed effects using type III
sums of squares, correcting denominator degrees of freedom for F-tests [89]. All data
figures were created with the ggplot2 package [90]. Additionally, we assessed whether
sprint speed changed over time in captivity by comparing sprint performance at 15 ◦C
between measures made after 3 days in captivity and after 6 days in captivity with a linear
mixed model of log10-transformed sprint speed (as above), including the fixed effect of time
of measurement and the random effect of individual. Further, we calculated repeatability
of sprint performance at this temperature with the rptR package in R [91], using 1000
bootstraps and 1000 permutations to estimate 95% confidence intervals and a p-value,
respectively.

3. Results

Field body temperatures at time of capture averaged 25.0 ◦C (N = 31; range: 12.6–31.7 ◦C;
Figure 2A). Transplanting lizards to low elevation affected both the mean (t27.6 = −2.92,
p = 0.0069) and variance (F1,37 = 14.7, p = 0.0005) of thermal preference: lizards transplanted
to low elevation exhibited lower thermal preferences and greater variance compared
to lizards maintained at high elevation (low elevation mean ± SD: 30.6 ± 3.6 ◦C; high
elevation mean ± SD: 33.2 ± 1.7 ◦C; Figure 2B). Elevation treatment, temperature, and the
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interaction of elevation treatment and temperature affected sprint performance (Table 1,
Figure 3). Lizards transplanted to low elevation were slower runners at the three highest
temperatures (29, 32, and 35 ◦C), as demonstrated by post hoc comparison of estimated
marginal means (Table 2, Figure 3). Snout-vent length also exhibited a marginal effect on
sprint performance, with larger lizards sprinting faster (β = 0.0032 ± 0.0016 SE; Table 1).
Sprint speed at 15 ◦C did not differ between the two measures made at the beginning
and end of the experiment (β = −0.023 ± 0.015 SE; F1,39 = 2.21, p = 0.14), and individuals
exhibited moderate repeatability of sprint performance at this temperature (R = 0.381,
95% CI: 0.084–0.619, p = 0.003).

Figure 2. Boxplots and raw values of (A) field body temperatures and (B) thermal preferences of
adult male Iberolacerta bonnali lizards. Thermal preferences (panel B) measured in lizards at low
and high elevation. Tukey boxplots show median, interquartile range, and 1.5× interquartile range
of raw data values. Asterisk indicates significant difference between treatment groups for thermal
preference (see text for statistical details).

Table 1. Results of linear mixed model analysis of sprint performance (log10-transformed m/s) in
adult male Iberolacerta bonnali lizards at low and high elevation (see text for statistical details).

Source of Variation Test Statistics
Temperature

F (dfn, dfd) 114.8 (4, 152)
Pr > F <0.001

Treatment
F (dfn, dfd) 5.13 (1, 37)

Pr > F 0.030
Temperature × Treatment

F (dfn, dfd) 2.84 (4, 152)
Pr > F 0.026

Snout-vent length
F (dfn, dfd) 4.02 (1, 37)

Pr > F 0.052
Significant effects shown in bold (p < 0.05).
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Figure 3. Boxplots of raw values for sprint performance in adult male Iberolacerta bonnali lizards at
low and high elevation. Asterisk indicates significant difference between treatment groups at 29, 32,
and 35 ◦C (see text for statistical details).

Table 2. Estimated marginal means of log10-transformed transformed sprint speed (m/s) and
differences between treatment groups at each temperature in adult male Iberolacerta bonnali lizards
(see text for statistical details).

Temperature
(◦C)

Low Elevation
(SE)

High Elevation
(SE) Difference (SE) Significance

Test

15 −0.176
(0.02)

−0.188
(0.02)

0.012
(0.29)

t171 = 0.43
p = 0.668

22 0.022
(0.02)

0.013
(0.02)

0.009
(0.29)

t171 = 0.33
p = 0.744

29 0.054
(0.02)

0.113
(0.02)

−0.059
(0.29)

t171 = −2.068
p = 0.040

32 0.103
(0.02)

0.171
(0.02)

−0.068
(0.29)

t171 = 0.−2.39
p = 0.018

35 0.134
(0.02)

0.212
(0.02)

−0.079
(0.29)

t171 = −2.77
p = 0.006

Significant differences at a given temperature shown in bold (p < 0.05).

4. Discussion

Previous work on vertebrate ectotherms demonstrates a near-universal limitation of
performance and aerobic metabolic capacity under conditions of reduced oxygen avail-
ability, especially at high temperatures [65,92]. On the basis of this work, one would
predict that a lizard species endemic to high-elevation habitats, and thus reduced oxygen
availability, would demonstrate increased performance when exposed to a relatively hy-
peroxic environment. Our results are exactly contrary to this prediction, but in support of
the hyperoxia-as-constraint hypothesis proposed in the introduction to this paper. When
transplanted to low elevation, individuals of the high-elevation specialist I. bonnali suffered
reduced sprint speed at high temperatures (Tables 1 and 2, Figure 3) and selected lower
body temperatures in thermal preference trials (Figure 2B). Most of our understanding of
oxygen limitation in ectothermic vertebrates comes from experiments reducing oxygen
availability relative to the conditions in which organisms evolved or developed, and thus
experiments such as the current study are essential for understanding more broadly how or-
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ganisms can deal with ecologically relevant levels of oxygen variation. Our results suggest
strongly that adaptation to reduced oxygen environments restricts an organism’s ability to
take advantage of increased oxygen availability and, in fact, acute exposure to hyperoxia
may be detrimental to performance and ultimately fitness. For example, limiting sprinting
performance may have immediate consequences on lizards’ ability to avoid predators or
catch prey [93,94].

While essential for aerobic life, oxygen is also toxic due to its ability to form molecules
which attract electrons and can damage important biochemical structures [95–97]. Our
results demonstrate that, even across ecologically relevant levels, acute increase in oxygen
availability does not necessarily benefit whole-organism performance. This is in accord
with previous work demonstrating that organisms that have evolved at near-sea-level
conditions are unable to increase performance measures under hyperoxia [98]. For exam-
ple, other lizard species exposed to hyperoxia do not alter selected body temperatures or
behavioural response to high temperatures, although hyperoxia may increase physiolog-
ical tolerance to high temperatures ([99–101], but see [102]). This suggests that multiple
physiological pathways involved in aerobic respiration are fine-tuned to current oxygen
environments, not simply limited by ambient oxygen levels. Therefore, deviations from
baseline availability—either increase or decrease—may disrupt these pathways and lead
to performance decrements. Future work is needed to examine the specific pathways and
trade-offs involved. Our results suggest that, at their native elevation, lizards have evolved
to meet metabolic demand when exposed to high temperatures despite low partial pressure
of oxygen [103]. When more oxygen is available, these pathways can be dysregulated by
hyperoxia in a manner that may disrupt the regulation of oxidative phosphorylation (ATP
production) and increase the production of damaging reactive oxygen molecules (ROMs)
in the mitochondria (reviewed in [62,63]). In our experiment, lizards transplanted to low
elevation lowered their preferred body temperatures, which will result in reduced aerobic
metabolic rates. This reduction of oxygen demand in the presence of increased oxygen
availability could further exacerbate a potential increase in ROM production [104,105]. At
the same time, this reduction in preferred body temperature coincides with a decrement in
running performance at high temperatures in hyperoxia. Lizards may be avoiding warmer
temperatures where performance is inhibited as a compensatory mechanism. Further
work is needed to discern the specific signalling pathways that determine an individual’s
preferred temperature and how these may be disrupted by relative hyperoxia.

The mechanisms that restrict certain taxa to high-elevation habitats remain elusive.
Most commonly, restriction to high-elevation habitats is attributed to either inability to
inhabit warmer, low-elevation habitats (e.g., [25]) or due to the presence of competitors
at lower elevations [32,106,107], including specific examples in high-elevation specialist
lizards of the genus Iberolacerta [39,40,42,43,45,108]. However, the congener Iberolacerta
cyreni does not exhibit agonistic interactions with the low-elevation lizard Podarcis muralis
either in experimental or field settings, providing little support for competitive exclusion
restricting I. cyreni to high-elevation habitats [46,109]. Our results suggest that in addition
to competitive interactions and cold-specialised thermal physiology, a third mechanism—
adaptation to low-oxygen environments and inability to deal with relative hyperoxia—
may contribute to the elevation restriction observed in I. bonnali and potentially other
Iberolacerta species. I. bonnali are extremely adept thermoregulators [83], suggesting that
they could behaviourally buffer themselves in a warmer environment [38,110]. However,
levels of oxygen ability will interact with available temperatures to shape thermal ecology
(as described by the hierarchical mechanisms of thermal limitation hypothesis [65]). If
thermoregulatory set-points are determined by the thermodynamic effects of temperature
on metabolism, increased oxygen availability could disrupt the acquisition of optimal
temperatures for different aspects of organismal function. For example, we found that
I. bonnali transplanted to low elevations selected temperatures 2.6 ◦C cooler than lizards
kept close to the elevation of origin. This reduction in selected temperatures will likely
result in a decrement in fitness-related physiological processes. Additionally, exposure
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to novel conditions might increase among-individual variation in traits when previously
cryptic genetic variation is exposed [111,112]. In this case, increased among-individual
variation in thermal preferences could indicate there is greater genetic variance—in trait
means or plasticity—upon which natural selection could act in novel environments.

Our results suggest that the evolved capacities of I. bonnali to compensate for low
oxygen availability in their high-elevation habitats may be maladaptive when lizards are
translocated to low elevations and increased oxygen availability. The extent to which this
limitation may be important in restricting the range of high-elevation specialists needs to be
assessed in more taxa. The inability to adjust to relative hyperoxia may act in conjunction
with other factors, such as increased interspecific competition or higher temperatures, to
limit species distributions. Our data also suggest that I. bonnali may be resilient to short-
term increases in high temperatures. Their preferred body temperature in unconstrained
laboratory conditions is well above temperatures lizards achieved in the field and they are
capable of maintaining at least one measure of whole-organism performance, sprinting,
at even the highest temperature we tested (35 ◦C). The important conservation question
is then the capacity for lower-elevation species, such as lizards in the genus Podarcis, to
move upslope and the potential ramifications of increased interspecific interactions, which
remain unclear [45,46,113].

Future studies should also test the response of high-elevation lizards when acclimated
to low-elevation conditions for longer periods of time and how physiological plasticity
might mitigate the negative consequences we observed, such as through shifts in blood
oxygen capacity, reactive oxygen molecule production, or metabolic rates (e.g., [114]). Over
longer exposures to relative hyperoxia, lizards may be able to respond via physiological
plasticity to compensate for the new environment. For example, the congener I. cyreni
dramatically reduced hematocrit, increased body condition, and increased preferred body
temperatures after two weeks of exposure to a modest increase in oxygen availability [114].
However, such plasticity may not fully compensate, and performance can be reduced,
as found in low-elevation lizards transplanted to high elevation (e.g., [66,115]). It is
also essential to test the capacity of embryos to develop successfully in different oxygen
environments, as this life-history stage may be more resilient to such limitations [48,116–
118]. Our results were directly opposite to predictions based on models developed from
studies of organisms inhabiting generally normoxic environments introduced to conditions
of oxygen limitation. This highlights the complexities of oxygen physiology and that the
assumption of “more is better” does not apply to organisms adapted to life at high elevation.
Studies of the unique physiological adaptations of high-elevation organisms remain an
essential—and underexplored—area in characterising the vast biological diversity of our
planet [119,120].
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