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Abstract
Aim: The contributions of historical biogeography, morphology and climatic niche evolution 
in shaping species diversification have been typically examined separately. To fill this gap, 
we assessed the relative role of geologic history, environment and phenotypic trait evolu-
tion in lineage diversification of green lizards in the Mediterranean biodiversity hotspot.
Location: Eurasia and North Africa.
Taxon: Green lizards (genera Timon and Lacerta).
Methods: For all green lizard lineages, we characterized distributional ranges and exter-
nal morphological traits across discrete biogeographical areas, occupied macro- habitats 
and climatic niches using environmental variables that represent average and extreme 
climatic conditions. To assess the contribution of geographical factors in shaping diver-
sity patterns, we evaluated the fit of 24 biogeographical models. We used BAMM and 
estimated phylogenetic signal to assess the rates of lineage diversification and of pheno-
typic and climatic niche evolution, and to determine whether these processes occurred 
steadily or at specific time periods as a response to palaeogeological or palaeoclimatic 
events. Finally, we tested for associations between phenotypic traits and lineage diver-
sification using trait- dependent diversification analyses (QuaSSE, ES- sim and STRAPP).
Results: Biogeographical analyses favoured a dispersal– vicariance model explaining 
speciation patterns in green lizards, including jump dispersal and constrained disper-
sal by geographical distance. Lineages accumulated gradually towards the present, 
with minor divergence in morphological traits and conservatism of climatic niches. 
In contrast, in the Lacerta agilis lineage, niche evolution may have allowed expansion 
towards colder environments. Morphological and climatic niche evolution were un-
coupled from diversification rates.
Main Conclusions: Biogeographical processes largely explain the constant lineage di-
versification of green lizards in the Mediterranean Basin since the Miocene, followed by 
gradual phenotypic divergence unrelated to cladogenesis. Climatic niche conservatism 
promoted the accumulation of lineages within the Mediterranean, except for L. agilis, 
where climatic niche evolution might underpin its range spread towards higher latitudes.

K E Y W O R D S
climatic niche evolution, dispersal, diversity hotspot, integrative biogeography, Lacerta, 
phylogenetic comparative methods, Timon
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1  |  INTRODUC TION

Understanding the mechanisms that generate and maintain biodiver-
sity is an ambitious task for biogeographers and evolutionary ecolo-
gists (Keil & Chase, 2019; Owens et al., 2017; Pennington et al., 2010). 
A plethora of factors including different combinations of geologic, 
ecological, evolutionary, climatic and demographic processes simul-
taneously contribute to shape phenotypic and species diversifica-
tion (Bars- Closel et al., 2017; Moen & Wiens, 2017). Geologic events 
determine the timing and span of connections and disconnections 
between landmasses that ultimately promote broad- scale patterns 
of migration and admixture, or lead to isolation and divergence of 
populations (Gorscak & O'Connor, 2016; Leprieur et al., 2016; Zhao 
et al., 2020). In addition, changes in landmass configuration, like the 
emergence of islands and the uplift of mountain ranges, result in 
drastic climatic, ecological and habitat- structure changes that can 
lead to the emergence of new environmental and structural niches 
(Hoorn et al., 2010; Price et al., 2014). Concurrently, climatic oscil-
lations often lead to the isolation of populations, promoting allopat-
ric divergence, especially in topographically heterogeneous regions 
(e.g. Martínez- Freiría, Freitas, et al., 2020; Velo- Antón et al., 2013). 
Likewise, ecological opportunity (e.g. generated by the creation of 
new niches) has been shown to boost diversification in a wide range 
of taxa (Badgley et al., 2017; Esquerré et al., 2019; Pincheira- Donoso 
et al., 2015).

These non- mutually exclusive processes often, but not always, 
also trigger phenotypic divergence of the diversifying taxa. While 
in some systems (islands or crater lakes), extensive morphological 
changes can result from rapid niche shifts associated with species 
radiations (Garcia- Porta et al., 2016; Kozak & Wiens, 2016), in con-
tinental systems different processes dictating the accumulation of 
new lineages and their phenotypic evolution are probably at play. 
Similar to instances of morphological divergence accompanying or 
not cladogenesis, the degree of divergence in climatic niche during 
lineage diversification varies widely across groups of organisms. As 
such, climatic niche divergence, frequently mediated by local adap-
tation to contrasting environmental conditions, has been proposed 
as an important mechanism of allopatric or parapatric speciation in 
some systems (Ahmadi et al., 2021; Graham et al., 2004). Conversely, 
climatic niche conservatism, together with regional climatic stability, 
has been frequently invoked to explain the accumulation of diver-
sity in prominent biodiversity hotspots such as the Mediterranean 
Basin, by preventing climatic niche evolution and geographical 
range expansion (Martínez- Freiría, Freitas, et al., 2020; Skeels & 
Cardillo, 2017, 2019). Because the aforementioned mechanisms and 
processes have been typically examined independently (i.e. focusing 
on historical biogeography, functional morphology or climatic niche 
evolution separately), the interplay among them and how they con-
jointly shape species diversification and evolution remains elusive.

To fill this gap, here we assess the relative role of geologic and 
environmental factors and phenotypic trait evolution in the di-
versification of green lizards (genera Lacerta and Timon) around 
the Mediterranean Basin (Figure 1), one of the global biodiversity 

hotspots (Myers et al., 2000). The diversification of green lizards is 
framed in a scenario of profound paleogeographic events that af-
fected the Mediterranean basin since the Neogene (~23– 2.5 million 
years ago [Mya]; Appendix S3). These include a gradual retraction 
of the Tethys sea, the closing of the Arabian Seaway (connecting 
the African- Arabian plate to Asia Minor), the closing (and later re- 
opening) of the Gibraltar Strait connecting North Africa to the Iberian 
Peninsula during the Messinian Salinity Crisis and the uplift of Irano- 
Anatolian mountains (Ahmadi et al., 2021; Gómez & Lunt, 2015; 
Popov et al., 2006; Prista et al., 2015; Rögl, 1998; Steininger & 
Rögl, 1984). During this period, the Mediterranean underwent drastic 
and repeated global climate changes with associated habitat modifi-
cations, until the Pleistocene glacial cycles (Cavazza & Wezel, 2003; 
Hewitt, 2000; Jiménez- Moreno et al., 2010). Green lizards exhibit rel-
atively high diversity of lineages in the Mediterranean and extensive 
phenotypic variation (particularly in body size: Arnold et al., 2007). 
As such— and given the complex geologic and climatic history of the 
Mediterranean Basin— they provide an excellent study system to as-
sess the relative role of geology, climate and phenotypic evolution 
in determining lineage diversification and biogeographical patterns.

To this end, we first reconstructed the biogeographical history 
of green lizards and estimated rates of lineage diversification along 
the evolutionary history of the clade to test whether lineage diversi-
fication proceeded at a relatively constant rate through time or if it 
peaked at specific time periods (e.g. as a response to palaeogeolog-
ical or palaeoclimatic events). Although the pattern of mostly para-
patric distributions shown by green lizards suggests a scenario of 
climatic niche conservatism with little or no ecological shifts (i.e. in 
relation to microhabitat use; Reaney et al., 2018), previous studies 
pointed to a combination of climatic niche conservatism and diver-
gence (Ahmadzadeh et al., 2013, 2016) underlying their diversifi-
cation. Moreover, the morphological variation within green lizards 
is suggestive of variation in ecological niche. Therefore, to test for 
conservatism or divergence in morphology (associated to trophic/
structural niche) and climatic niche traits, we evaluated their degree 
of phylogenetic signal. Finally, to test whether speciation and pheno-
typic evolution are coupled, we estimated rates of phenotypic mac-
roevolution and tested for associations between phenotypic traits 
and rates of lineage diversification.

2  |  MATERIAL S AND METHODS

2.1  |  Species data

2.1.1  |  Phylogenetic data

We used the multilocus time- calibrated phylogeny of green lizards 
inferred by Adams et al. (2020). We collapsed all branches that 
diverged <2.5 Mya in the time- calibrated phylogeny (following 
Martínez- Freiría, Toyama, et al., 2020), obtaining a final tree with 
26 tips. The decision to collapse nodes younger than 2.5 Mya was 
made to avoid including in the phylogeny most of the intraspecific 
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    |  3ENRIQUEZ-­URZELAI et al.

phylogenetic variation, and restrict our analyses to evolutionary 
events that occurred before the Pleistocene. This allowed us to ex-
clude recent lineages that appeared after the Mediterranean Basin 
reached its present configuration, and that represent population— 
rather than species- level evolutionary divergence (Martínez- Gil 
et al., 2021). Details on all procedures applied for phylogenetic in-
ference can be found in Adams et al. (2020). We used the maximum 
clade credibility tree to reconstruct historical biogeography, and 
to investigate the processes involved in lineage diversification and 
phenotypic divergence (see below). However, whenever computa-
tionally feasible, we repeated analyses over 1000 phylogenetic trees 
randomly drawn from the posterior distribution of BEAST runs from 
Adams et al. (2020), to account for phylogenetic uncertainty.

2.1.2  |  Morphological data

To describe morphological variation among green lizards, we meas-
ured museum vouchers of most species/lineages retrieved in the 

phylogenetic tree (see exceptions below). Specifically, we measured 
snout– vent length (SVL; a proxy of size), trunk length (TRL), forelimb 
length (FLL), hindlimb length (HLL), head length (HL), head width 
(HW) and head height (HH). With the three head measurements 
(HL, HW and HH), we computed head size (HS) as the cubic root of 
their product (Kaliontzopoulou et al., 2012; Mosimann, 1970). We 
only considered morphological measurements of male specimens, to 
circumvent any confounding factor arising from sexual dimorphism. 
Furthermore, to account for sampling bias, we retained the 10 larg-
est individuals from each lineage (or mixture of lineages for collapsed 
branches, see Figures S1.1, S1.2) for data analyses (Table S2.1). We 
size- corrected all morphological measurements (except for SVL) by 
extracting the residuals from reduced major axis regressions be-
tween each variable and SVL, using the sma function of the ‘smatr’ 
R- package v3.4- 8 (Warton et al., 2012). We log- transformed all mor-
phological traits before analyses. Because morphological data were 
not available for Lacerta agilis boemica, L. media ciliensis and L. viridis 
guentherpetersi, we excluded these three taxa from all downstream 
analyses involving morphology.

F I G U R E  1  Phylogenetic relationships among Lacerta and Timon species considered in this study, and corresponding distribution ranges in 
Eurasia and North Africa. The phylogenetic tree corresponds to the tree obtained after collapsing recent branches (2.5 Mya).
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4  |    ENRIQUEZ-­URZELAI et al.

2.1.3  |  Distribution, climatic niche and 
macrohabitat data

To characterize the climatic niche of each lineage, we obtained raw distri-
bution ranges for each nominal species from IUCN (2018). Subsequently, 
we divided species ranges with GIS software (QGIS, 2020) to match 
intraspecific lineages as defined by published phylogeographical stud-
ies (see references; Figure 1). To describe the climatic niche of each 
lineage, we used seven environmental variables that represent average 
and extreme climatic conditions (Martínez- Freiría, Toyama, et al., 2020) 
at a spatial resolution of 20 km2 downloaded from WorldClim v2 (Fick 
& Hijmans, 2017; http://world clim.org/version2): average tempera-
ture (Tavg), maximum temperature (Tmax), minimum temperature (Tmin), 
water vapour pressure (VAPR), precipitation (PREC), solar radiation 
(SRAD) and elevation (ELEV). Following Martínez- Freiría, Toyama, 
et al. (2020), we extracted the central 95% values within each distribu-
tion range for each variable to minimize the risk of including extreme 
environmental values from areas in which species might not be present. 
With those values, we calculated average (Tavg, VAPRavg, PRECavg and 
SRADavg), maximum (Tmax, VAPRmax, PRECmax and SRADmax) and mini-
mum monthly environmental conditions (Tmin, VAPRmin, PRECmin and 
SRADmin), as well as average, maximum and minimum elevations for 
each lineage (ELEVavg, ELEVmax and ELEVmin). Environmental variables 
were obtained using the ‘raster’ R- package v3.5- 2 (Hijmans, 2020). See 
Appendix S1 for additional details and Table S2.2 for a summary of val-
ues of these variables per lineage.

To characterize the general (macro)habitat occupied by each lin-
eage, we overlaid estimated distribution ranges with biome informa-
tion from the Ecoregions2017©Resolve initiative (ecore gions 2017.
appsp ot.com; Olson et al., 2001). Then, we calculated the proportion 
of each lineage distribution in each biome and identified the predom-
inant one (i.e. the biome accounting for the highest proportion of 
the distribution of each lineage). All lineages predominantly (>70% in 
most cases) occupied one of the three following biomes: temperate 
Grasslands– Savannas– Shrublands (2 lineages), temperate broadleaf 
mixed forests (11 lineages) or Mediterranean Forests– Woodlands– 
Scrub (13 lineages), although in some cases the distribution across 
biomes was more even (Table S2.2).

2.2  |  Historical biogeography

We reconstructed the biogeographical history of the group using the 
‘BioGeoBEARS’ R- package v1.1.2 (Matzke, 2013; https://github.com/
nmatz ke/BioGe oBEARS), based on the time- calibrated phylogeny 
and the geographical range of each lineage across discrete geographi-
cal areas. We defined seven biogeographical regions representing 
landmasses that either connected/disconnected from each other dur-
ing the geologic history of the Mediterranean Basin or acted as major 
refugia during Pleistocene climatic oscillations: Iberian Peninsula (I), 
Italian Peninsula (T), Balkan Peninsula (B), Asia Minor (A), Arabian 
Peninsula (R), North Africa (N) and central and northern Europe (C). 
We considered a lineage to occur in a given area when at least 10% of 

its distribution included that area. Given that this threshold is some-
what subjective, we also used 20% and 30% of species' distributions 
as alternative thresholds to assess the congruence in results.

We considered a total of 24 models, based on the three 
main biogeographical models implemented in BioGeoBEARS: (i) 
Dispersal– Extinction– Cladogenesis (DEC), (ii) a likelihood- based 
DIspersal– VicAriance model (DIVALIKE) and (iii) a likelihood implemen-
tation of BAYAREA (BAYAREALIKE). These models differ in the biogeo-
graphical processes considered (see Matzke, 2013 for a synopsis of the 
processes implemented in each model). Biogeographical reconstruc-
tions under DEC are modelled considering dispersal, extinction, (nar-
row— if the ancestor lives in a single area, daughter lineages inherit the 
ancestral range and subset— if the ancestor is widespread, one daugh-
ter lineage will inherit a subset of this area; Matzke, 2013), sympatric 
speciation and (narrow) vicariance. Under DIVALIKE, dispersal, extinc-
tion, (narrow) sympatric speciation and (both narrow and widespread) 
vicariance are considered. BAYAREALIKE considers dispersal, extinc-
tion and exclusively (narrow and widespread) sympatric speciation. It 
is worth noting that dispersal, in this case, is not related to speciation 
but to a process of range evolution. In addition, we fitted all three mod-
els including jump- dispersal, linked to speciation (i.e. speciation by long 
distance colonization, +J models; Matzke, 2014). Then we included in 
the resulting six models a matrix of geographical distances between 
areas to constrain dispersal (distance- based dispersal, +x, models; van 
Dam & Matzke, 2016). Finally, we repeated analyses with all 12 models 
(with and without geographical distances between areas) accounting 
for the palaeogeographical history of the region (time- stratified analy-
ses; +palaeo models). We considered eight different time periods from 
the present to 30 Mya that match with the important paleogeographi-
cal and paleoclimatic periods outlined in the introduction: for each we 
coded which areas were connected or disconnected (Appendix S3). 
We compared the fit of all models based on AICc and Akaike weights 
(Akaike, 1978, 1979; Burnham & Anderson, 2004).

2.3  |  Diversification analyses

2.3.1  |  Lineage and phenotypic diversification

We used the time tree of green lizards generated by Adams 
et al. (2020) to explore whether rates of lineage diversification varied 
along time (from the origin of the group until 2.5 Mya). We applied 
three widely used methods (Appendix S4), although we only present 
results from BAMM v2.5 (Rabosky, 2014) in the main text. BAMM 
aims at identifying heterogeneity in diversification rates through 
time by simultaneously exploring a multitude of candidate models, 
using reversible- jump Markov- chain Monte Carlo (MCMC). To test 
for rate shifts in lineage diversification, as expected if the major geo-
logical and climatic events that occurred in the Mediterranean have 
shaped cladogenesis in green lizards, we ran 20 million generations 
in four MCMC chains with δT set to 0.01 and a swap period of 1000 
generations. We sampled event data every 10,000 generations and 
discarded the first 10% of the samples as ‘burn- in’.
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To obtain a descriptive overview of whether phenotypic traits 
are conserved (i.e. more similar between closely related species 
than expected by chance), we quantified phylogenetic signal for 
each trait. We used Blomberg's K (Blomberg et al., 2003) and a 
randomization procedure to evaluate the strength and significance 
of phylogenetic signal. Significance values (i.e. p- values) were cor-
rected using the false discovery rate procedure for multiple testing 
(Benjamini & Hochberg, 1995). A significant Blomberg's K statistic 
with a value of 1 implies that species are as similar as expected given 
a Brownian motion model of phenotypic evolution. Values of K lower 
or higher than 1 indicate that closely related species are more differ-
ent or more similar than the null expectation, respectively (Blomberg 
et al., 2003). To test whether K values significantly differed from 1, 
we compared empirical values against a null distribution for K = 1.0 
via simulation on our phylogeny. Specifically, we counted the num-
ber of simulated K values more extreme than observed values 
(based on absolute, logarithmic K values) following code available 
at http://blog.phyto ols.org/2011/12/testi ng- for- phylo genet ic- signa 
l- k.html. We also performed phylogenetic signal tests with 1000 
trees to account for phylogenetic uncertainty. To identify changes 
in rates of phenotypic diversification along time, we used BAMM 
(Rabosky, 2014). For each phenotypic trait, we ran 200 million gen-
erations in four MCMC chains with δT set as 0.01 and the swap pe-
riod as 1000 generations. We sampled every 5000 generations and 
discarded the first 50% of the samples as ‘burn- in’ (following Folk 
et al., 2019).

2.3.2  |  Linking phenotypic and environmental traits 
with lineage diversification

To test for associations between phenotypic traits (morphology and 
climatic niche) and rates of lineage diversification, we employed 
three methods (see Appendix S1 for details). QuaSSE (quantitative 
state speciation and extinction; Fitzjohn, 2010) models diversifica-
tion as a birth– death process in which speciation (λ) and extinction 
rates (μ) can be constant, linear, sigmoidal or hump- shaped func-
tions of a quantitative trait. For each phenotypic trait, we fitted 
models representing all the different potential relationships be-
tween traits and speciation using the ‘diversitree’ R- package v0.9- 
16 (Fitzjohn, 2012) and we compared models using likelihood ratio 
tests. ES- sim (inverse of equal- splits with simulated null model) tests 
for trait- dependent diversification by measuring tip- specific specia-
tion rates and simulating a null distribution under a given model of 
trait evolution (Harvey & Rabosky, 2018). We ran 10,000 simula-
tions assuming Brownian motion and used Pearson's correlation to 
determine significant relationships. Finally, STRAPP (structured rate 
permutations on phylogenies; Rabosky & Huang, 2016) tests for as-
sociation between phenotypic traits and diversification rates as es-
timated by BAMM. This method compares empirical values to a null 
distribution generated by permuting the diversification rates across 
the phylogeny. We correlated BAMM diversification rates and phe-
notypic traits by performing two- tailed STRAPP tests with 10,000 

replicates and using Spearman's rank correlation coefficients with 
the ‘BAMMtools’ R- package v2.1.8 (Rabosky et al., 2014).

To test for an association between habitat and macroevolutionary 
rates, we used MuSSE (multivariate state speciation and extinction; 
Fitzjohn, 2012) and QuaSSE (Fitzjohn, 2010). MuSSE allows specia-
tion (λ), extinction (μ) and transition (q) between states (the three 
predominant habitat types, in our case) to be either independent of 
(equal rates across habitats) or dependent on the habitat (separate 
rates for each habitat). We fitted several MuSSE models, recovered 
the maximum likelihood estimate of associated parameters and then 
compared models using likelihood ratio tests. We also analysed the 
effect of habitat type on diversification rates employing QuaSSE. 
Contrary to MuSSE, to fit QuaSSE models, we used data for each hab-
itat type separately (i.e. considering the percentage of each lineage's 
distribution on each of the three habitat types). We fitted models 
representing all the potential relationships between traits and spe-
ciation (either constant, linear, sigmoidal or hump- shaped functions) 
and compared them using likelihood ratio tests with the ‘diversitree’ 
R- package (Fitzjohn, 2012). See Appendix S1 for further details.

3  |  RESULTS

3.1  |  Historical biogeography

BioGeoBEARS analyses favoured the dispersal– vicariance 
(DIVALIKE) model including jump dispersal (+J) and distance- based 
dispersal (constrained dispersal due to geographical distance be-
tween areas; +x). The next most supported models were the 
DEC+J+x model, and DIVALIKE and DEC models including +J +x 
and palaeogeographical information (+palaeo; Table 1; Table S4.1). 
While the four best models were not statistically distinguishable 
from one another in terms of AICc, the best model (i.e. DIVALIKE +J 
+x) clearly outperformed the other models in terms of AICc weights. 
Increasing thresholds to consider a species present in a given area 
(i.e. 10%, 20% or 30%) decreased the support difference between 
models (Table 1; Table S4.2) and slightly changed biogeographical re-
constructions (Figures S4.1– S4.4). However, DIVALIKE +J +x always 
received the highest support regardless of the cut- off value used to 

TA B L E  1  Summary statistics for historical biogeography models 
with strongest support implemented in BioGeoBEARS

Model LnL k AICc
AICc 
weight

DIVALIKE +J +x −61.220 4 132.345 0.645

DEC +J +x −62.648 4 135.201 0.155

DIVALIKE +J +x +palaeo −63.143 4 136.191 0.094

DEC +J +x +palaeo −63.330 4 136.566 0.078

Note: AICc: Akaike's Information Criterion for small sample sizes, AICc 
weight: relative model probability; LnL: data likelihood, k: number of 
parameters. See Table S4.1 for summary statistics of all implemented 
models.
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assign species to areas. This result indicates that the most important 
biogeographical processes during the diversification of green lizards 
were vicariance and dispersal (including jump dispersal) limited by 
geographical distance.

3.2  |  Lineage and phenotypic diversification

BAMM did not support changes in diversification rates along time 
(Figure 2), with posterior probabilities and Bayes Factors (BFs) 

supporting equal diversification rates among clades (0 shifts: poste-
rior probability = 0.885; BF <0.207 in all cases; Table S4.5).

Considering morphological variables, we only found significant 
phylogenetic signal for body size (SVL) and relative head size (rHS). By 
contrast, we detected significant phylogenetic signal for most niche- 
related variables. Among these, we did not find significant differ-
ences between observed K values and the expected value of K = 1, 
suggesting that closely related lineages are as similar as expected 
under a Brownian Motion process and given the phylogeny (Table 2). 
These results are robust to phylogenetic uncertainty (Table S4.7).

F I G U R E  2  (a) Net diversification rate through time and (b– i) phenotypic macroevolutionary rates for all green lizard (Lacerta and Timon) 
lineages. (b, c) represent morphological diversification and (d– i) climatic niche trait diversification. Note that phenotypic macroevolutionary 
rates for each phenotypic trait have been scaled to range from 0 to 1.
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The diversification of most morphological traits seemed steady, 
but diversification rates of SVL and trunk length (rTRL) changed over 
time, according to BAMM analyses (Figure 2; Figure S4.7). While di-
versification slowed down towards the present in SVL, rTRL showed a 
sharp increase in diversification rates ~3 Mya (Figure 2). Furthermore, 
a scenario encompassing an increase in diversification rates of rTRL 
in the clade of L. agilis, as compared to the background, received 
support of 53.4% of the posterior distribution (44.0% + 9.4%; Figure 
S4.7). BFs, however, did not favour models with higher rates in the L. 
agilis clade over models with equal rates among clades (BF <4 in all 
cases; Table S4.5). We also found rate heterogeneity in niche traits 
over time (Figure 2; Figure S4.8). Tmax and SRADmax diversification 
rates decreased homogeneously towards the present, and rates for 
Tavg, Tmin, PRECavg and ELEVmin increased 3– 5 Mya (Figure 2). For Tavg, 
diversification rates increased in the branch leading to the L. agilis 
clade (32.6% of the posterior) or, less likely, in the branch leading 
to the L. agilis– media– trilineata clade (7.2% of the posterior); how-
ever, BFs did not support different rates between clades (BF <4 in 
all cases). Different evolutionary rates between clades for PRECavg 

were also rejected (BF <8 in all cases). Finally, Tmin diversification 
rates were significantly faster in the L. agilis clade, as supported by 
both the posterior distribution (77.3%) and BFs; models with one 
shift leading to faster evolutionary rates within L. agilis lineages 
received moderate support (BF = 10.015), and two or more shifts 
stronger support (BF = 14.710). We also found support for a shift in 
diversification rates for ELEVmin (BF = 18.815) leading to faster rates 
in the L. schreiberi and T. tangitanus clades (50.8% of the posterior).

3.3  |  Linking phenotypic and environmental traits 
with lineage diversification

All three implemented approaches provided negligible support for 
any association between phenotypic/environmental traits and line-
age diversification (Tables S4.8– S4.10). Although QuaSSE analyses 
identified associations of speciation rates with one morphological 
(rFLL) and several climatic niche variables (Tmax, PRECmax, ELEVavg), 
ES- Sim and STRAPP analyses yielded non- significant results for all 
morphological (ES- Sim: p > 0.583 and STRAPP: p > 0.994 in all cases) 
and climatic niche traits (ES- Sim: p > 0.140 and STRAPP: p > 0.991 in 
all cases). Similarly, the habitat occupied by lineages did not affect 
lineage diversification rates, according to MuSSE (LRT against the 
model with all rates equal across habitats: p > 0.233) and QuaSSE 
analyses (LRT: p > 0.340 in all cases).

4  |  DISCUSSION

Integrative studies combining geographical, morphological, cli-
matic niche and phylogenetic data can provide key insights on the 
major drivers of species diversification patterns and the underlying 
processes (Cavender- Bares et al., 2011; Gajdzik et al., 2019; Pato 
et al., 2019). The scarcity of such studies rests upon the difficulty 
in gathering all independent sources of information for a given taxo-
nomic group. By integrating these data at the macro- evolutionary 
level in a phylogenetic comparative framework, we show that the di-
versification of green lizards was dominated by the biogeographical 
processes of dispersal and vicariance, and that morphological and 
climatic niche divergence did not impact on lineage diversification 
rates. These inferences are essential to understand the processes 
involved in shaping biodiversity patterns in the Mediterranean bio-
diversity hotspot.

4.1  |  Lineage diversification across space and time

Our results indicate that dispersal into unoccupied areas and allopat-
ric speciation have largely driven the diversification of green lizards 
(as inferred by the DIVALIKE +J +x model; Table 1). Jump- dispersal 
(+J) and notably distance- based dispersal (+x models) also stood out 
as important biogeographical processes, outlining the importance of 
physical geography (e.g. landmass configuration) as a major driver of 

TA B L E  2  Phylogenetic signal as measured by Blomberg's K, their 
associated p- values before and after false discovery rate (FDR) 
correction, and the p- values of Blomberg's K differing from one for 
each phenotypic (morphological and climatic niche) trait, based on 
the maximum credibility tree

Phenotypic 
trait Blomberg's K p- value

Corrected 
p- value

K ≠ 1 
p- value

Morphology

SVL 1.093 0.001 0.005 0.855

rTRL 0.719 0.975 0.976 0.508

rHS 0.797 0.015 0.043 0.622

rFLL 0.755 0.970 0.976 0.577

rHLL 0.575 0.253 0.422 0.293

Climatic niche

Tavg 1.173 0.002 0.005 0.753

Tmax 1.216 0.001 0.002 0.693

Tmin 1.082 0.002 0.003 0.880

SRADavg 1.149 0.001 0.002 0.797

SRADmax 1.282 0.001 0.002 0.652

SRADmin 0.678 0.003 0.003 0.495

PRECavg 1.358 0.001 0.002 0.564

PRECmax 0.655 0.011 0.013 0.415

PRECmin 0.958 0.001 0.002 0.943

VAPRavg 0.810 0.362 0.395 0.700

VAPRmax 0.918 0.004 0.006 0.882

VAPRmin 0.807 0.527 0.527 0.710

ELEVavg 0.991 0.004 0.006 0.992

ELEVmax 1.232 0.002 0.002 0.713

ELEVmin 0.702 0.001 0.002 0.502

Note: Significant values are highlighted in bold font. See Table S4.7 for 
analyses incorporating phylogenetic uncertainty.
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biodiversity patterns (Qian & Ricklefs, 2000; Sandel et al., 2020; van 
Dam & Matzke, 2016). It is worth noting that ‘dispersal into unoc-
cupied areas’ refers to the colonization of areas without any green- 
lizard species represented in our phylogeny. Of course, our analyses 
are blind to any other (e.g. from other genera, or now extinct) species 
that may have been present in those areas. However, that is impos-
sible to know without fossil data, which is quite scarce and scattered 
for the group.

This is exemplified by some events associated with the bio-
geographic history of the genus Timon. According to the favoured 
model (DIVALIKE +J +x), the most plausible biogeographical sce-
nario suggests that the most recent common ancestor (MRCA) of 
Timon was widespread across North Africa and the Arabian plate, 
and later the MRCA of Iberian Timon species may have dispersed 
from North Africa to the Iberian Peninsula (Figure S4.1). Our bio-
geographical reconstruction, together with the time- calibrated 
phylogeny, dates dispersal through the Strait of Gibraltar in the 
Tortonian (9 Mya; 95 highest posterior density intervals: 10.5– 7 
Mya), some million years before the Messinian Salinity Crisis, MSC 
(Figures S1.1 and S1.2; see also Garcia- Porta et al., 2019; Paulo 
et al., 2008). Therefore, the colonization of Europe by Timon might 
have occurred through over- seas dispersal across one or multi-
ple narrow sea corridors that were in place during the Tortonian 
(Betic Corridor, Guadalhorce Corridor, Rif Corridor; see Paulo 
et al., 2008; Rosenbaum et al., 2002). We acknowledge that diver-
gence of Timon in north Africa prior to dispersal towards Europe 
might account for a split older than the colonization of Europe. 
But in this case, we would need to assume the occurrence of two 
old (>7 Mya) lineages in Africa, one of which colonized Europe 
and subsequently became extinct on the African continent. This 
scenario is less parsimonious than a scenario where the diver-
gence between the two lineages (European and African) followed 
the colonization of Europe from Africa. Furthermore, a scenario 
of over- seas dispersal before the MSC has been also inferred 
for Psammodromus lizards (Mendes et al., 2017) and other or-
ganisms with low dispersal ability such as beetles (Mas- Peinado 
et al., 2021), worm lizards and salamanders (see Hewitt, 2011; 
Mendes et al., 2017 for a review).

Lineage diversification analyses did not support shifts in diver-
sification rates at any time period along the evolutionary history 
of green lizards, or in association with any particular geologic, cli-
matic or dispersal event (Figure 2a; Figures S4.5 and S4.6). The lack 
of association between diversification rates and dispersal events 
is quite surprising given that our biogeographical reconstructions 
show that the diversification of green lizards was dominated by dis-
persal into previously unoccupied areas. Often, the colonization of 
novel areas leads to bursts of diversification, associated with access 
to empty niches (Miller et al., 2018; Schenk et al., 2013; Schenk & 
Steppan, 2018). However, phenotypic constraints (e.g. low evolvabil-
ities; Losos, 2010) or the presence of distantly related but ecologi-
cally similar competitors could have impeded green lizards to expand 
into new niches (Martínez- Freiría et al., 2008; Martínez- Freiría, 
Freitas, et al., 2020).

4.2  |  Phenotypic macroevolution and links to 
lineage diversification

Our results show that morphological evolution is not coupled 
with lineage diversification in green lizards. Although several 
evolutionary theories support the idea that phenotypic evolution 
occurs either as a burst in the early history of a clade (e.g. eco-
logical theory of adaptive radiations: Gillespie et al., 2020; Yoder 
et al., 2010) or in association with speciation events (punctuated 
equilibria: Gould & Eldredge, 1977), green lizards do not conform 
to these models. Similarly, we show that climatic niche evolution 
and macro- habitat use did not impact significantly on diversifica-
tion rates in green lizards (Tables S4.9 and S4.10). However, the 
methods used to test for associations between phenotypic traits 
and diversification rates often suffer from low statistical power 
when implemented on small phylogenies. Thus, given the weak 
support for the role of several climatic niche variables in diver-
sification (i.e. Tmax, PRECmax, ELEVavg) and the results of recent 
studies in subsets of the group (Ghane- Ameleh et al., 2021), we 
cannot completely exclude the possibility that climatic niche evo-
lution may have contributed to speciation dynamics of this group 
during climatic oscillations.

Regarding morphological macroevolution, we found that the 
evolutionary rate of body size (SVL) decreased gradually through 
time (Figure 2). This possibly led to body sizes as similar as expected 
given shared evolutionary history (Table 2). The fact that all extant 
green lizard species, despite occupying a variety of habitats, are 
ground- dwellers, could partly explain this result (Arnold et al., 2007; 
Collar et al., 2011; Velasco et al., 2020). Likewise, among- lineage 
differences in head sizes were as expected given the phylogeny 
(Table 2). Since the head is involved in a variety of highly relevant 
ecological tasks such as feeding, refuge use, mating and male aggres-
sive interactions (Gomes et al., 2016; Kaliontzopoulou et al., 2012), 
the gradual divergence in head dimensions could reflect minor tro-
phic or structural niche divergence. The evolutionary rTRL, a trait re-
lated to manoeuvrability and climbing ability, among other functions 
(Žagar et al., 2017), peaked ~3 Mya for the whole group. However, 
and although rTRL did not show significant phylogenetic signal, its 
value did not result significantly different to that expected given 
the phylogeny. Thus, it also points out to minor structural niche di-
vergence. As a cautionary note, we would like to add that although 
for neutrally evolving traits the link between evolutionary rates and 
phylogenetic signal might be direct, the relationship might not be as 
straightforward for traits under selection. Empirical data are a mix of 
traits evolving under selection (i.e. where trait value depends on the 
trait optimum and the speed of evolution towards it) and neutrally 
(i.e. where trait value depends on ancestral state and evolutionary 
rate). Since we have no means of evaluating which traits are evolving 
under selection or neutrally, we admit that our argument assumes 
neutrally evolving traits. Altogether, and although morphological 
divergence in concert with geographical expansion have been hy-
pothesized to drive continued diversification (Kennedy et al., 2018; 
Ramírez- Barahona et al., 2016), our results suggest that the steady 
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diversification of green lizards occurred mainly due to geographical 
expansion, but unrelated to morphological evolution (Tables S4.8 
and S4.10; see also Lee et al., 2016).

We also show that a combination of climatic niche conserva-
tism and divergence played a central role in shaping their diversity 
around the Mediterranean hotspot. Previous studies on specific 
green lizard clades produced mixed results: while in the Lacerta 
trilineata– pamphylica– media group and the western Timon clade 
(lepidus– nevadensis– tangitanus– pater) climatic niches have diverged 
(Ahmadzadeh et al., 2013, 2016), they are conserved in the east-
ern Timon princeps– kurdistanicus clade (Ahmadzadeh et al., 2016). 
According to our phylogenetic signal estimates (Table 2), green liz-
ards as a whole show conserved climatic niches (i.e. niche traits 
as similar as expected given a Brownian model of phenotypic evo-
lution). According to BAMM, rates of maximum temperature and 
solar radiation diversification of green lizards decreased towards 
the present, again supporting conserved thermal niches, and plau-
sibly linked to the observed decrease in body size evolutionary 
rates during a period of general global cooling (Burke et al., 2018). 
Furthermore, rates for Tavg, Tmin, PRECavg and ELEVmin increased 
3– 5 Mya ago and, remarkably, rates of Tmin evolution seemed faster 
in the L. agilis group, which likely facilitated the spread of these lin-
eages into colder environments (e.g. higher latitudes in Europe and 
Asia; Figure 1; Figure S4.1). These results agree with our hypoth-
esis that, while climatic niche conservatism promotes the build- up 
of biodiversity in Mediterranean type ecosystems, rapid niche 
evolution allows transitions away from hotspots (Dinis et al., 2019; 
Martínez- Freiría, Freitas, et al., 2020; Rato et al., 2015; Skeels & 
Cardillo, 2017, 2019).

4.3  |  Conclusion

Integrative studies combining phylogenetic, geologic, phenotypic, 
climatic and ecologic data are key to explaining how biodiversity 
hotspots such as Mediterranean type ecosystems are formed. Using 
a series of integrative analyses to link different sources of variation 
we show that biogeographical processes (i.e. dispersal events fol-
lowed by allopatric divergence) largely governed the diversification 
of green lizards around the Mediterranean Basin. This was followed 
by minor morphological divergence not correlated with cladogen-
esis, which emerges as a recurrent pattern in continental systems 
(Adams et al., 2009; Ashman et al., 2018; Garcia- Porta et al., 2017; 
Lee et al., 2016). Furthermore, this study corroborates that a combi-
nation of climatic niche conservatism and divergence contributes to 
explain patterns of diversity in Mediterranean type ecosystems (Dinis 
et al., 2019; Martínez- Freiría, Freitas, et al., 2020; Rato et al., 2015; 
Skeels & Cardillo, 2017, 2019). In agreement with our expectations, 
our results suggest that the interplay between climatic niche con-
servatism/divergence and minor changes in functional morphology 
(and thus trophic and structural niche) led to the pattern of mostly 
parapatric distributions, centred around the Mediterranean hotspot 
of diversity. We stress the need for additional integrative studies to 

better characterize and understand global biodiversity patterns and 
their underlying processes.
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